
IBM Copyright Permission #22527

Reprint Courtesy of International Business Machines Corporation, © 1994
International Business Machines Corporation'

INTERNATIONAL BUSINESS MACHINES CORPORATION (IBM) ARMONK, NEW YORK 10504

PERMISSION TO REPRINT/POST IBM COPYRIGHTED PUBLICATIONS

The material owned by IBM must be accompanied by the following credit line: “Reprint Courtesy of
International Business Machines Corporation, © [Year] International Business Machines
Corporation”. The credit line normally should appear on the page where the posting appears, either
under the title or as a footnote. If the foregoing is inconvenient, the credit line may be placed in a
conveniently viewable manner with suitable reference to the places where the material appears.

It is the understanding of International Business Machines Corporation that the purpose for which
its material is being reproduced is accurate and true as stated in the original request.

Permission to quote from, transmit electronically or reprint/post IBM material is limited to the purpose
and quantities originally requested and must not be construed as a blanket license to use the material
for other purposes or to reproduce other IBM copyrighted material.

IBM reserves the right to withdraw permission to reproduce copyrighted material whenever, in its
discretion, it feels that the privilege of reproducing its material is being used in a way detrimental to its
interest or the above instructions are not being followed properly to protect its copyright.

No permission is granted to use trademarks of International Business Machines Corporation and
its affiliates apart from the incidental appearance of such trademarks in the titles, text, and illustrations
of the named publications. Any proposed use of trademarks apart from such incidental appearance
requires separate approval in writing and ordinarily cannot be given. The use of any IBM trademark
should not be of a manner which might cause confusion of origin or appear to endorse non-IBM
products.

THIS PERMISSION IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

INTERNATIONAL BUSINESS MACHINES CORPORATION

Dated: April 22, 2014

OS/2 2. 1 for Software Developers
Supplemental Material

CN 17400C/N 1740

---. Revision 1 .04
~ September 13, 1994

1

Course materials may not be reproduced in whole or in part without
t~e prior written permission of IBM Corporation.

© Copyright IBM Corporation (1991, 1994)
All Rights Reserved.

CONTACT ORGANIZATION
NODE(USERID)
Internet

Education and Training
DAL VM 1 (ROHR)
rohr@dalvm1.ibm.com
Bob Rohr NAME

TELEPHONE 914-7 42-5653 Tie/line 770-5653

CN17400C OS/2 2.1 Supplement 2 Copyright

'"' 3 Table of Contents

Appendix C - IBM C Set/2 Compiler Issues

Appendix D - OS/2 2. 1 Desktop

Appendix DL - Dynamic Link Libraries

Appendix E - OS/2 2. 1 Exception Handling

Appendix EDIT - PC DOS E.EXE and OS/2 EPM.EXE

Appendix L - OS/2 2. 1 Extra Lab Projects

Appendix M - OS/2 2. 1 Memory Management API

Appendix S - IBM C Set Compiler Signals

Appendix ST AC - Using Stacker for OS/2 and Dos

Appendix T - IBM C Set Compiler Thunking

CN17400C OS/2 2.1 Supplement 3 Table of Contents

4 Diskettes

The following diskettes may be available to you:

1 . N 1740 Class Diskette
2. UPDATE.ZIP - Extra .INF files
3. WTDOS25C/N 1746 Advanced OS/2 2.0 Class Diskette
4. HP PCL 5 for Advanced OS/2 2.0 Labs, for Supplement

NOTES:

Reading Assignments:

Day 1:
Day 2:
Day 3:
Day 4:

Read Appendix D, EDIT
Read Appendix C, M
Read Appendix DLL
Read Appendix E, S

Copy to floppies by doing:

XCOPY \OS20LABS\DISK 1 \ * . * A: /S IV
XCOPY \OS20LABS\DISK2\ * . * A: /S IV
XCOPY \OS20LABS\DISK3\ *. * A: /S IV
XCOPY \OS20LABS\DISK4\ * . * A: /S IV

The diskettes are stored in \OS20LABS\DISK1, etc. You are free to copy these to floppies. There is
a read.me file in each directory. In general (except for #4) you can install the software simply by
doing PKUNZIP2 -o -d a: * .zip.

Disk 1 contains the workshop help , the text supplement, the review questions, the lab projects, the lab
solutions, and the example programs.

The homework reading should prepare you better for the lecture material. Do as little or as much of the
reading as you find comfortable. In general, reading the material ahead of time makes the lectures go a
bit easier.

The lab disk (disk #3) and the lab text (disk #4) from the Advanced OS/2 class are provided for your use
in reviewing the material. Disk #4 must be printed by copying the files to an HP Laserjet 3 or 4, or any
printer supporting PCL5. Use COPY /B filename prn.

CN17400C OS/2 2.1 Supplement 4 Diskettes

OS/2 2. 1 for Software Developers

Appendix C

C Set/2 Compiler Issues

Some material in this chapter
courtesy IBM Toronto Lab

OS / 2 2.1 for Developers C-1

by Charles R. Chernack

C Set / 2 Compiler Issues

2 Table of Contents

Appendix C - IBM C Set / 2 Compiler Issues

IBM C Set Runtime Libraries (not including C++)
Typical Makefile

IBM C Set Compiler Options
Output File Management Options (/ Fa, etc)
Listing Options (expand macros, etc)
Lint Like Options (/ Kb, etc)
Debugging Options (/ Ti, etc)
Source Code Options (/Ss, etc)
Code Generation Options (/ Gd / Gm / Rn, etc.)
Other Compiler Options (/ B / Q, etc.)
MAKEFILE Analysis .
MAKEFILE Questions

Compiler Optimizing .
Coding for Optimization
Variable Type PCSZ
Use of #define

The #pragma Directive
pragma chars, checkout, comment
pragma langlvl
pragma linkage
pragma pack, segl6, stackl6, subtitle, title

Dynamic Memory Allocation (malloc, etc)

Buffering of stdout .

Compiler Macros including MULTI

C-1

C-3
C- 6

C-6
C-6
C-7
C-8
C-9
C-10
C-11
C-12
C-13
C-14

C-15
C-15
C-15
C-15

C-16
C-17
C-18
C-19
C-20

C-21

C-22

C-24

Including .MSG files when Statically Linking C-25
Using DosCreat e Thread with Multithreaded Libraries C-25

Answers to Questions C-26

Appendix C -r C Set / 2 Compiler C-2 Table of Contents 09 / 13 / 94

IBM C Set Runtime Libraries

We'll discuss the six libraries which come with the IBM C Set Compiler for C
programming. We will not discuss those for C + +. Generally you do not have to deal
with these by name, as compiler generates the names for you. But you do have to
select the ones you want (or take the defaults) in your makefile.

[1]

[2]

[3]

[4]

[5]

[6]

DDE4NBS LIB

DDE4NBSI LIB
DDE4NBS DLL
DDE4NBSO LIB
DDE4NBS DEF

<Single Threaded Application Library> Gm-

DDE4SBS LIB Gd- Gm- Static Singlethread
+ DDE4SBM LIB Gd- Gm- Sm Migration Library

DDE4SBSI LIB Gd Gm- Dynamic Singlethread
DDE4SBS DLL
DDE4SBSO LIB
DDE4SBS DEF
+ DDE4SBMI LIB Gd Gm- Sm Migration Library

DDE4SBM DLL
DDE4SBM DEF

<Multi-Threaded Applicat ion Library> Gm

DDE4MBS LIB
+ DDE4MBM

DDE4MBSI LIB
DDE4MBS DLL
DDE4MBSO LIB
DDE4MBS DEF
+ DDE4MBMI

DDE4MBM
DDE4MBM

Gd- Gm Static Multithread
LIB Gd- Gm Sm Migration Library

Gd Gm Dynamic Multithread

LIB Gd Gm Sm
DLL
DEF

Migration Library

You specify the subsystem library with /Rn. The default library is /Gd- /Gm- which
is #3 above (single threaded statically linked application library) -- see page C-11.
You can explicitly specify single-threaded or multi-threaded using /Gm or /Gm-;
and static or dynamic with /Gd or /Gd-. You can also ask for the extra migration
functions by specifying /Sm.

In the lab makefile we sometimes use the defaults which is perhaps bad practice
since you cannot tell which libraries are used by looking at the makefile (unless
you know the defaults).

Besides the C Runtime our applications dynamically link to the OS/2 2. 1 system API.
The import library for these is OS2386.LIB. If we are going to call some of the
16-bit API functions from our 32-bit program (making use of the thunking capability
built into the IBM C Set Compiler), then we will also link to 052286.LIB.

Appendix C - C Set/2 Compiler C-3 IBM c Libraries

[1], [2] SubSystem Library

The subsystem libraries have no serialization, no initialization, and all routines
are reentrant or documented not to be. Most are reentrant. The use of this library
is (1) it is a subset of the full library, (2) it is small, it is fast to start up
(no initialization), it comes in static or dynamic versions. If you are writing
ANYTHING which only uses functions which are in this library, and you don't mind
serializing yourself, we recommend using this library because it will be smaller in
memory. Use DosCreateThread as beginthread() is not supported. We used this
library in Lab Project 2. -

LAB2D.EXE file size

/ Rn / Gd
/ Rn / Gd+

33824
24312

static subsystems library
dynamic subsystems library

The subsystems library is useful if you are developing code which is going to go into
a device driver or a display driver or some sort -- partially running at ring 0. The
startup code which the normal run-time has creates semaphores -- will not run at ring
0 or inside a device driver where these functions are not available.

In the subsystem library, you must use DosCreateThread. You then must provide your
own serialization.

[3] Single Threaded Static

All the applications libraries have initialization code, are full function, and convert
most operating system exceptions into easy to handle C signals. The single threaded
statically linked application library may be used when you want independence from DLL
modules which may or may not be in the target environment, and when you have only one
thread in your application.

[4] Single Threaded Dynamic

If you have but one thread in your program you may link to the single threaded
applications library. It can only be used with one thread per process but by any
number of processes. The library uses instance initialization (a DLL topic we'll
discuss on Thursday) to allocate a small block of memory for each process. In this
block the library keeps state information (malloc tables, state tables, stuff that
fopen uses) on a per process basis.

NOTE: If you are going to be using the multi-threaded dynamic for other processes, you might just as well use it
for single threaded processes as well - it is quite fast
and saves replication of DLL modules in RAM.

Thus, you may NOT want to use the single threaded dynamic.

Appendix C - C Set / 2 Compiler C-4 IBM C Libraries

,.

[5] Multi-Threaded Static

Multi-Threaded Static: YOU MUST USE _BEGINTHREAD, and absolutely everything is
serialized or reentrant. It uses a very fast serialization method so that the
difference in performance between it and the single threaded library is for all intents
unmeasureable except for the cases where there are collisions on serialization. You
would use the static library instead of the dynamic library if you are not confident
that the DLLs you need will be in the target environment.

[6] Multi-Threaded Dynamic

The Multi-Threaded Dynamic Library can handle many processes each of which have
many threads - everything is taken care of. The performance is super unless there is
a collision - the overhead to test for collision is less than a dozen cycles (if
there is no collision). This library can be used for processes and for DLLs.

TYPICAL.EXE file size

/ Gm / Gd
/ Gm / Gd

65 6 03
24 768

stati c mu ltithread libr ary
dynami c mult ithre ad libr ary

Migration Libraries

The migration libraries "front end" the other libraries. That is, if you specify /Sm in
cases [3-6] you get an appropriate migration library as well as the specified library.

Typical MAKEFILE

The makefile below is from LAB2A. You can review makefile syntax by looking into the
workshop Text Supplement under NMAKE Examples or typing VIEW TOOLINFO NMAKE.
Note that we redirect the output to an error file (main.err, tool.err, etc). On the
next few pages we will look at the compiler command line options.

browse .exe:

main. obj: $* . c
ice / c / Ss / Ti / Kb / Q / Rn / Fa $* . c > $*.er r
type main . err

t oo l . ob j : $ * . c
i ce / c / Ss / Ti / Kb / Q / Rn $*.c > $* . err
type tool . e rr

screen .obj : $* . c
i ce / c / Ss / Ti / Kb / Q / Rn $*.c > $* . err
t ype sc r een . e rr

browse .exe : main .obj t oo l . obj screen.obj mai n.de f
l ink386 / DE / NOI / NOL / LI / BAS E :OxlOOOO main t ool screen , b r owse , , ,main ;

Appendix C - C Se t / 2 Compiler C- 5 I BM C Lib rar i e s

Compiler Options - Output Files /F

Generally we do not use any of these /F options. In the previous example, we used /Fa
(which is the same as /Fa+) to specify that we wanted to create main.asm. When that is
done, you can look at the .ASM file to see the machine code emitted by the Compiler.
Generally we need not do this (even as assembler programmers) as IPMD will show us a
mixed listing and allow us to break on specific assembler instructions.

We do not use the /Fe option to specify that we want main.c converted to browse.exe.
Instead, we use a spot in the option list of LINK386. See VIEW TOOLINFO LINK386.

Output File Management Options

OPTION DESCRIPTION DEFAULT

11 / Fa[+i-J 11 Produce and name an " / Fa- II

assembler listing
11 /Faname 11 file that has the Do not create an

source code as com- assembler listing
ments. file.

11 /Fc[+l-J" Perform syntax II /Fe- II

check only.

" / Fename" Specify name of Give the executable
executable file or file the same name
DLL. as the first source

file, with the
extension II .EXE" or
II .DLL 11

•

11 / Flname" Specify name of II / Fl- II

listing file.
Give the listing
the same file name
as the source file,
with the extension
II .LST".

II /Fm [+I -] II Produce a linker "/Fm-"
map file.

" / Fo[+l - J" Create an object " / Fo[+]"
file.

Appendix C - C Set/2 Compiler C-6 Compiler Options - Output Files

.-

-·
,-

Compiler Options - Listing

Gemerally we never use the listing options, but I put them in here to show you that you
can get some expanded listings if you so desire.

You can also specify titles using the #pragma title and subtitle directives, but these
titles do not appear on the first page of the listing output. Try VIEW DDE4LRM
#pragma.

Listing Output Options

OPTION DESCRIPTION DEFAULT

" / L[+l-J" Produce listing file. 11 / L-11

" / La [+ I -] " Include a layout of " / La-"
all struct and union
variables with off sets Do not include a
and lengths. layout.

" / Le [+I -] " Expand all macros. " / Le-"
Do not expand
macros.

II / Lf [+ I -] II Set all listing II /Lf- II

options on or off.
Set all listing
options off.

II / Li [+ I -] II Expand user II / Li- II

#include files.
Do not expand user
#include files.

II / Lj [+ I -] II Expand user and II / Lj - II

system #include files.

" / Lpnum" Set page length. " / Lp66"

" / Ls[+l-J" Include the source " / Ls-"
code.

II / Lt II string II II Set title string. II / Lt" II II

II / Lu II string II II Set subtitle string. 11 / LU"1111

" / Lx [+I -] " Generate a cross- " / Lx-"
reference table of
variable, structure Do not generate a
and function names cross-reference
that shows line table.
numbers where names
are declared.

Appendix C - C Set / 2 Compiler C-7 Compiler Options - Listing

Compiler Options -/K (lint like warnings)

The IBM C Set compilers have an excellent lint-like warning capability. We recommend
that you always use /Kb when migrating to the IBM C Set compiler from another C
compiler. We always use /Kb in the lab makefiles.

Debugging Options - K Options

OPTION DEFAULT

" /Ka [+I -] " " /Ka -"
Suppress messages about assignments that may
cause a loss of precision.

" /Kb [+l-J" II /Kb- II

Suppress basic diagnostic messages.

" /Kc [+I -] " " /Kc -"
Suppress preprocessor warning messages.

" /Ke [+I -] " " /Ke -"
Suppress messages about "enum" usage.

II /Kf [+I -] II II /Kf- II

Set all diagnostic messages options off.

II /Kg [+I -] II II /Kg- II

Suppress messages about "goto" statements.

II /Ki [+I -] II II /Ki- II

Suppress messages about uninitialized
variables.

" /Ko [+I -] II II /KO - II

Suppress portability messages.

II /Kp [+ I -] II II /Kp - II

Suppress messages about unused function
parameters.

"/Kr [+I -] II " /Kr -"
Suppress messages about name mapping.

11 /Kt[+j-] 11 II /Kt- II

Suppress preprocessor trace messages.

" /Kx [+I -] II " /Kx- "
Suppress messages about unreferenced
external variables.

Appendix C - C Set/2 Compiler C-8 Compiler Options - Lint /K

Compiler Debugging Options

We always use the /Ti option in our labs to put debugging information into the .OBJ
file, and then we use the /DE option to LINK386 to pass that on to the .EXE file. You
might experiment with removing the /DE option to generate a smaller .EXE. In one case,
where I was writing code in MASM I found that 50% of the size of my .EXE file was
debugging information! Keeping the /Ti in your compiler options keeps the debug
information available (making a bigger .OBJ file), and eliminating /DE from the
LINK386 invocation drops the debugging information from the . EXE file.

The W (warning) errors are different than the /K (lint-like) error messages, so we keep
them both in. Since the default for /W is /W3, we leave that parameter out of our
makefiles.

Debugging Options - / N / W / T

OPTION

11 / Nn 11

11 / Ti[+l-J"

11 / W [0 11 I 2 I 3] 11

" / WO"
"/Wl"
II / W2"

DESCRIPTION DEFAULT

Set maximum number Set no limit on
of errors before number of errors.
compilation aborts.

Generate c Set / 2 " / Ti-"
debugger informa-
tion. Do not generate

debugger inf orma-
tion.

Set the type of II / W3 11
message the com-
piler produces and Produce all message
that causes the types.
error count to
increment.

Produce only severe errors.
Produce severe errors and errors.
Produce severe errors, errors, and warnings.

Appendix C - C Set / 2 Compiler C- 9 Compiler Options - / N / W / T

Source Code Options
The only source code option we use is /Ss, which allows us to use the double slash

for comments. For C programming, the use of a double slash is not recommended. We
often do it as it seems to unclutter our source code and our transparencies. Use
VIEW DDE4LRM #pragma to review #pragma langlvl, #pragma pack, #pragma margins,
and #pragma sequence.

Source Code Options

OPTION DEFAULT CHANGING DEFAULT

/ S[aielml2J " / Se" 11 / Sa" Conform to ANSI standards

Allow all language " / Sm" Allow migration extensions
extensions except
migration. II / S2 11 Conform to SAA Level 2

/ Sg [l] [,<rl*> II / Sg- II " I Sg [1] [, r I *] "

/ Sg- Do not set any Set left margin to "l". The right
margins: use the margin can be the v alue r, or an
entire input file. asterisk can be used to denote no

right margin. "l" and r must be
between 1 and 65535 inclusive, and
r must be greater than or equal t o
"l".

/ Sh[+l-J II / Sh- II II I Sh [+] II

Do not allow Allow use of
ddnames. ddnames.

/ Sn [+I -] " / Sn-" " / Sn [+] "

Do not allow DBCS. Allow use of DBCS.

/ Sp[lJ214J II / Sp4" II / Sp [1 I 2) II

Align structures Align structures and unions along
and unions along 1-byte or 2-by te boundaries
4-byte b oundaries (structures and unions are
(normal alignment) considered to be II Packed").

II / Sp" is equivalent to II / Spl".

/ Sq [1] [,<rl*> II / Sq- II 11 / Sq[l] [,r]"
/ Sq-

Use no sequence Sequence numbers appear between
numbers. columns "l" and r of each line in

the input source code.

/ Ss[+!-J " / Ss-" 11 / Ss[+]"

Do not allow II Allow the double slash format to
for comments. indicate comments.

Appe ndix C - C Set / 2 Compil e r C-10 Source Code Options - / S

Code Generation Options /G /M /0 /R
These are really the important ones. Note that the default is /Re /Gm- /Gd- /0- /G3

/Gp-. This means to use the standard application library, single threaded, statically
linked, no optimization, 386 code (will run on 486). When we look at the execution
trace analyzer \IBMCPP\BIN\IXTRA.EXE we will see the use of /Gp.

Code Generation Options

OPTION DEFAULT CHANGING DEFAULT

/ Gd[+j-J / Gd- Static Library / Gd [+] Dynamic Library

/ Ge [+I -] /Ge [+] Build .EXE / Ge- Build DLL

/ Gh[+j-J / Gh- no profiling hooks / Gh [+] profiling hooks

/ Gm [+I -] / Gm- single thread lib / Gm [+] multithread lib

/ Gn[+j-J / Gn- default libraries / Gn [+] specify libraries

/ Gp[+l-J / Gp- / Gp [+]
Do not generate the Generate the code to
code for protected DLLs. create a protected DLL.

/ Gr[+j-J / Gr- ring 3 / Gr [+] ring 0

/ Gs [+I -] /Gs- keep stack probes / Gs [+] remove stack probes

/ Gt[+j-J / Gt- / Gt [+]
Do not map variables for Enable all variables to be
16 bit segments. passed to 16-bit functions.

/ G3l / G4 / G3 optimize for 386 / G4 optimize for 486

/ Mpj / Ms / Mp opt link linkage / Ms system linkage

/ 0[+1-J /0- no optimization / 0 [+] optimize code

/ Rel / Rn / Re application library / Rn subsystem library

Appendix C - C Set / 2 Compiler C-11 Code Generation Options

Other Compiler Options

The /B option allows you to pass a string to the linker. This is sometimes used
to pass /Li to the linker to get line numbers in the map. Since we create our own
makefiles and we run both the compiler and the linker out of our makefiles,
generally we will never use the /B option.

Other Options

OPTION DEFAULT CHANGING DEFAULT

/ B"options" II / B" II II " / B"options""

Pass no parameters Pass options string
to the linker. to the linker as

parameters.

/ C[+l-J II / C- II " / C[+] II

Perform compile and Perform compile
link. only, no link.

/ Hnum " / H255" 11 / H"num

Set the first 255 Set the first num
characters of characters of
external names to e x ternal names t o
be significant. be significant.

The value of num
must be between 6
and 255 inclusive.

/ J[+l-J " / J[+]" II / J- II

Set unspecified Set unspecified
"char" variables to "char" variables to
"unsigned char". "signed char".

/ Q[+l-J II / Q- II " / Q[+J II

Display logo o n Do not display
"stderr". logo.

/ V"string" " / V" II II " / V" string""

Set no version Set version string
string. to string. The

length of the
string can be up to
256 characters.

You can view these compiler options on line by typing VIEW DDE4LRM Using
Compiler Options. You can then page forward from that point in the reference using
the "F" key.

Appendix C - C Set / 2 Compiler C-1 2 Other Compiler Options

Makefile Analysis

We invoked link386 with the options and command line elements:

LINK386 [options] objfiles [,exefile, mapfile, libraries, deffile]

/DE /NOi /NOL /LI /BASE:Ox10000 main tool screen,browse,,,main;

You can review these by typing VIEW TOOLINFO LINK386. NOi says to preserve case
sensitivity , NOL disables the sign-on banner, and /LI puts the line numbers into the
map file. An .EXE file produced by the linker is relocatable, but OS/2 2.1 always
starts the application's private memory space at Ox 10000. By providing that information
to LINK386 in the /BASE statement, certain fixup records are eliminated from the .EXE
f ile making the loading faster and the .EXE f ile about 4% smaller.

browse .exe :

main . obj : $*. c
i ce / c / Ss / Ti / Kb / Q / Rn /Fa $*.c > $*.err
type main . err

t ool. obj: $* . c
ice / c / Ss / Ti / Kb / Q / Rn $*. c > $*.err
type t ool . err

s c r een.obj : $* . c
ice / c / Ss / Ti / Kb / Q / Rn $* . c > $*. e rr
t ype s creen.err

browse.exe: main.obj t ool . obj screen .obj main.def
link386 /DE /NOI /NOL /LI /BASE:OxlOOOO main tool screen,browse,,,main;

The /Fa option to the compiler caused MAIN.ASM to be produced, part of which is
shown below. Notice the INCLUDELIB statements which tell the linker exactly which
of the C runtime libraries to include.

TITLE MAIN .C
. 38 6
. 387
INCLUDELIB os2386 . lib
INCLUDELIB dde4nbs.lib

CODE32 SEGMENT DWORD USE32 PUBLIC ' CODE'

Appe ndix C - C Set / 2 Compi l er C-13 Makefi l e Ana l ysis

14 Makefile Questions

1] Why do we explicitly specify /Kb but not specify /W3 when we invoke the
compiler? What is the purpose of the /Q option? What is $ *?

a]

2] Why do we route the output of the compiler to $*.err? What is the result of
this if there are severe errors in the compile?

a]

3] What is the purpose of /BASE:Ox10000. What other steps can be taken to
enhance the .EXE file in this manner?

a]

4] When using NMAKE, you can define a macro (string substitution) by writing
macroname = new string. You can reference the macro anytime with the syntax
$(macroname). Define a macro called cOptions and show how you would use it in
the makefile on page C-1 3. Why do this? ·

a]

[l Check your answers on page C-26.

Appendix C - C Set/2 Compiler C-14 Makefile Questions

,..--

IBM C Set Compiler Optimizing

The IBM C Set Compiler optimizes quite well -- it is one of the best features of the
compiler. It produces state of the art code. In general, do not optimize when running
IPMD (the debugger). If you do optimize, you can still break on function entry and
function exit, but that's about it. The transformations that the optimizer performs are
of such an extensive nature that the relationship between source code and object code is
very very blurry after optimization. We unroll loops, get rid of calls when they can be
eliminated (jumps, etc.).

General hints to stay out of the way of the optimizer: use local variables instead of
static or global. If the variable is only used in the procedure not only is it faster
but the optimizer knows who can and who cannot change it. Don't take the address of a
local variable because the optimizer then has to make more pessimistic assumptions about
it.

If you have a function which receives a pointer, and the function does not change what
this pointer points at, put a CONST in the prototype function because the optimizer will
then know that you don't change it.

void foo (canst char *)

canst is a promise to the compiler that you will not assign it in foo.

If you have loop indices make them local variables , and do not take the address of a
loop index -- then it is hard to put it in a register.

Variable Type PCSZ
This material is from PROGREF21: If a function t akes as a parameter a string that is
not changed by the function, the string parameter can be declared as a "canst " string,
or a PCSZ. PCSZ is defined in the C + + header files as a "canst" pointer to a
NULL-delimited string . The "canst" means that the function will not change the contents
of the string.

Declaring the parameter as PCSZ informs the C + + compiler that the function will not
change the string . Therefore, the compiler simply passes a pointer to the string in the
function parameter list. If the parameter is declared as a normal PSZ (not "canst"),
the compiler assumes that the function might change the string. Under these
circumstances the compiler will add code to make a copy of the string then pass a
pointer to the copy, rather than passing a pointer to t he original string.

A smaller, faster executable is often produced if the data item passed in a parameter
list is declared as "canst" . See VIEW PROGREF21 PCSZ data type.

Use of #define
When declaring the name of shared memory object, such as \sharemem\ourlab\tuesday,
use a #define rather than a PSZ. That way you can put the item in an .H file shared
by many source files, and the compiler knows that th is is a constant string.

Appe ndix C - C Set /2 Compiler C- 15 Op timi zing

The #pragma Directive

A pragma is an implementation defined instruction to the compiler. It has the
general form given below, where character sequence is a series of characters giving a
specific compiler instruction and arguments, if any. r-

I
v

>>~#~pragma~~-character_sequence~-'--><

The character sequence on a pragma is not subject to macro substitutions. More than
one pragma construct can be specified on a single #pragma directive.

The following pragmas are available:

alloc text
chars
checkout
comment
data seg
handler
langlvl
linkage
map
margins
pack
page
pagesize
seg16
sequence
skip
stack 16
strings
subtitle
title

Pragma handler is used to register the C runtime exception handler exception. It
can also be used in conjunction with map to register your own handler. Pragmas
linkage, seg16 and stack16 are used with compiler thunking. The linkage pragma
may be replaced with in line statements, such as:

void _Far16 _Cdecl wait_ key (void(* Far16 _Cdecl)(char, char));

Appendix T on Thunking and appendix E on Exception handling will deal with some of
these issues.

Appendix C - C Set / 2 Compiler C-16 #pragma

Compiler Pragmas

>>-#pragma-chars- (---csig~ed~-J-.---) -><

unsigned

>>-#pragma-checkout- (-i-resume~) --><

Lsuspend

>>-#pragma-comment- (~-~-compi ler·~--,,.------------.---) -><

date------<

times tamp

user------' ,-"characters"

#pragma chars allows you to override the default, which is unsigned.

#pragma checkout allows you to suspend the diagnostis performed by the /K options
during specific portions of your program, and then resume the same level of
diagnostics at some later point in the file. See VIEW DDE4LRM checkout. Note
therein that the /K options should not be used for new code!

In the case of #pragma comment:

compiler - the name and version of the compiler is emitted into the end of the
generated object module.

date - the date and time of compilation is emitted into the end of the generated
object module .

timestamp - the last modification date and time of the source is emitted into the
end of the generated object module.

copyright - the text specified by the character field is placed by the compiler into
the generated object module and is loaded into memory when the program is run.

user - the text specified by the character field is placed by the compiler into the
generated object but is not loaded into memory when the program is run.

Appendix C - C Set/2 Compi l er C-17 #pragma

#pragma langlvl

extended-

>>~#pragma~-langlvl~ (ansi~~--+~) ~><

saa------i

saal 2---1

mig·----'

This #pragma directive can be specified only once in your source file, and must
appear before any C code . The language level can also be set using the /Sa, /S2,
/Se, and /Sm

The compiler defines preprocessor variables that are used in header files to define
the language level. The options are as follows:

ansi: Defines the preprocessor variables ANSI and STDC Allows only
language constructs that conform to ANSTC standards.

saa: Defines the preprocessor variables SAA and SAA L2 . Allows only
language constructs that conform to the most recent level of-SAA C standards
(currently Level 2). These include ANSI C constructs.

saal2: Defines the preprocessor variable SAA L2 Allows only language
constructs that conform to SAA Level 2 CstancfardS. These include ANSI C
constructs.

extended: Defines the preprocessor variable EXTENDED . Allows ANSI and
SAA C constructs and C Set/2 Standard extensions. Migration extensions are not
allowed.

mig: Defines the preprocessor variable MIG . Allows ANSI and SAA C
constructs, and all C Set/2 extensions, both Standard and Migration.

Appendix C - C Se t /2 Compi l er C-18 #pragma langlvl

#pragma linkage

-f
optlink

>>~#pragma~linkage~ (~identifier~, system~~~~~~~~-+--) -><

farl 6~--.--~~~~~----.----'

c dec l----<

cdecl----<

fast c all

fastcall

pascal

_pascal

Linkage has to do with the way parameters are passed to procedures. All OS/2 system
functions (all the Dos API we use, etc) are declared APIENTRY in the function
prototypes in the header files. APIENTRY is defined to be _System in OS2DEF.H.

The linkage pragma (or equivalent linkage keywords) is the key element in Thunking
(at least from our point of view, as applications programmers).

The C Set/2 default linkage is optlink, which is a convention specific to the C Set/2
product. However, if your program calls OS/2 APls, you must use the system linkage
convention, which is standard for all OS/2 applications. Remember that threads
created with DosCreateThread need system linkage, whereas threads created with
beginthread need optlink (the default).

The far16 linkage conventions indicates that a function has a 16-bit linkage type.
The cdecl and cdecl options are equivalent. The underscore is optional, and is
accepted for compatibility with C/2 cdecl linkage declarations. Similarly, pascal
and pascal are equivalent and specify C/2 pascal linkage, and fastcall and fastcall
specify Microsoft fastcall linkage . If far16 is specified without a parameter,
cdecl linkage is used.

You can also use linkage keywords to specify the linkage type for a function.
Linkage keywords are easier to use than the #pragma linkage directive, and let you
declare both the function and its linkage type in one statement. See the example on
page C-16.

You can use compiler options to explicitly set the linkage type to optlink (!Mp) or
to change the default to system linkage (!Ms). These options are described in Code
Generation Options. However, if a linkage keyword or #pragma linkage directive is
specified, it overrides the compiler option.

Appendix c - C Set/2 Compi l er C- 19 #pragma link a ge

#pragmas continued

>>--#pragma--pack--(~-~)-><

1

2

4

>>--#pragma--seg16-(-identifier-)-><

>>--#pragma--stackl6--(~~~~~~~-)--><

Lsizej

>>--#pragma-- subti tle- ("-subtitle-")- ><

>>--#pragma--ti tle- ("-ti tle- 11) -><

The #pragma pack directive specifies the alignment rules to use for the structures
and unions that follow it. Packing on 4-byte boundaries (the default) is tuned to the
32-bit wide bus trading space for performance. Try VIEW DDE4LRM PACK.

#pragma seg 16 allows you to declare a pointer as a 16: 16 pointer. That is, the
compiler will maintain the contents of that pointer as a 16: 16 pointer. If #pragma
seg 16 is used on variables of a structure type, the pointers inside that structure
are not automatically qualified as usable by 16-bit programs. If you want the
pointers in the structure qualified as such, you must declare them using the Seg 16
type qualifier. We will discuss this Appendix T. -

#pragma stack 16 allows you to specify how much stack a 16-bit function that you call
will have. We'll look at the mechanics of that in Appendix T as well.

Appendix C - C Set/2 Compiler C-20 #pragmas continued

Dynamic Memory Allocation

void *malloc(size t size); <- size in byte requested

malloc reserves a block of storage of size bytes. malloc
returns a pointer to the space, or NULL if the space is
not available. The storage is private to the process. The
memory is committed when it is allocated.

void *free (void *ptr) ; <- address of block to free

return storage allocated with malloc to malloc pool

int _heapmin(void); - > 0 == ok, -1 == fail

The heapmin function returns all unused memory from the
run-time heap to the operating system. Not SAA.

void *alloca(size t size) <- bytes requested

This function may be used inside a procedure to allocate
memory from the stack. It is very fast, but the memory
is deallocated when you end the procedure. The memory
may not be shared with other processes. Not SAA.

malloc uses DosAllocMem under the covers, so that the memory is private to the
process. malloc asks for a minimum of 64K and keeps a pool of free memory from which
it allocates buffers. free returns memory to the malloc pool, but malloc does not
do a DosFreeMem (to return the memory to OS/2) unless (1) you do a heapmin and
(2) there is a free 64K memory object that malloc can release back to OS/2.

alloca is another C function to allocate memory. There is no corresponding free
since the memory is allocated out of the stack of the calling function. alloca is
extremely fast because it generally just means moving the stack pointer. However,
alloca is allocating from a finite resource (the thread's stack) whereas malloc has
access to the full process address space by using DosAllocMem directly. Allocations
made with malloc last the life of the process (or until you do a free), but allocations
made with alloca last only the life of the function in which the allocation is made.

Lab project three part one in the advanced class labs (see Appendix L) does some
performance measurement of malloc, alloca, DosAllocMem and DosSubAllocMem. That lab
uses the 32 millisecond system clock to time-stamp presentation manager messages as
the measurement tool. Better tools include IXTRA (the IBM Execution Trace Analyzer
which comes with C Set+ +) and ASDT - the application and system debug tool from IBM
Lexington which is released on the Developer's Connection.

Appendix C - C Set/2 Compiler C-21 malloc and alloca

Buffering of stdout

* IBM C Set/2 buffers stdout by default

* IBM C/2 and Microsoft C 5.X do not

#inc lude <stdio .h>
int main (void)

{
printf ("To continue , p res s the <Enter > key:") ;
getchar () ;
}

What's wrong with this program?

When is buffering of stdout useful?

Buffering of stdout means that the output directed to stdout is not immediately
written to stdout but instead is written to a buffer and copied to stdout when
either the buffer fills or when a newline character is received.

In the example above, you do not see the message asking for the enter key until you
hit the enter key . When the enter (newline) character is echoed, the message comes
out. This is disconcerting and makes examples in K&R not work!

If standard out is redirected, the buffering of standard out can be useful. But when
standard out is the display, you (the programmer) must be aware of the effects.

Appendix C - C Set /2 Compiler C- 22 Bufferi ng o f stdout

,-

Buffering of stdout - Three "solutions"

#include < stdio.h >
int main (void)

{
printf ("To continue, press the <Enter> key: \n");
getchar ();
}

#include < stdio.h >
int main (void)

{
setbuf (stdout, NULL);
printf ("To continue, press the <Enter> key: ");
getchar ();
}

#include < stdio.h >
int main (void)

{
printf ("To continue, press the <Enter> key: ");
fflush (stdout);
getchar ();
}

There are three ways to work around the problem on the previous page -- the problem
that the message "Hit ENTER" does not print out until you actually do hit enter.
First, you can include a newline (\n) charact er in your message.

Second, you can specify that you will provide the buffer for standard out and that
there is not one! This is done using setbuf (stdout, NULL). This statement must be
done before the first character transfer to standard out.

If you want to leave buffering to standard out enabled, and you want to see a line
which does not have a newline character at the end, then you can execute
fflush(stdout) which causes an immediate dump of the stdout buffer to t he stdout

--.. device.

Appendix C - C Set/2 Compiler C- 23 Buffering o f s t dout

Some Macros Defined by the Compiler

There are a number of macros defined by the compiler. A partial list of them appears
below. We use MULTI in the labs. To see a full list, type VIEW DDE4LRM
ADDITIONAL.

_cplusplus

Set to the integer 1. Indicates the product is a C + + compiler. This macro is
valid for C + + programs only.

DLL

Indicates code for a DLL is being compiled. Defined using the /Ge- compiler
option.

MULTI

Indicates multithread code is being generated. Defined using the /Gm compiler
option.

OS2

Set to the integer 1. Indicates the product is an OS/2 compiler.

SPC

Indicates the subsystem libraries are being used. Defined using the /Rn compiler
option.

Appendix C - C Set / 2 Compiler C-24 Some Macros including MULTI

,-

Static Linking and . MSG Files

At certain times the compiler runtime will print messages to STDOUT. These include
the error messages from the C exception handler. If you have the .MSG files on
disk with the normal pathing (to-\IBMCPP\HELP) then statically and dynamically
linked EXEs and DLLs will find the messages. If you produce a statically linked
EXE and run it on a system which does not have these .MSG files, you will get a
series of "message not found" messages.

Generally this will not occur when you are dynamically linking, because you have
the C "stuff" on your disk when you execute. But if you statically link and ship
off your EXEs to another (user) environment, you may see this problem.

The message file used at runtime by the CIC++ runtime is DDE4.MSG. To stay within
the license, you MUST bind it to your app; you can't ship it

One problem, multiple solutions:

1. If you have WorkFrame/2 Version 2.1 installed, the following command will bind
the runtime messages to your executable:

DDE3MSGB xxx.exe d:\path\HELP\DDE4.MSG

Where:

xxx.exe is your executable
d:\path is where you installed the C + + compiler

2. If you have WorkFrame/2 Version 1 .1, create a project that contains DDE4.MSG,
any object file, and which creates your target. Go into makefile generation,
and select the object file and DDE4.MSG , and the actions LINK and MESSAGE
BIND. Makefile generation will then generate a make file which contains the
command and input file for the MSGBIND utility from the toolkit.

3 . If you do not have workframe, you can look up the runtime message numbers, and
the instructions for using MSGBIND, and build all the files yourself. The runtime
message numbers are documented in the "IBM C/C + + Tools Onl ine Language
Reference" (in the C Set++ folder), and MSGBIND is documented in the "Tools
Reference" (in the Toolkit Information folder).

\Using DosCreateThread with Multithreaded Libraries/

To use DosCreateThread with the multi-threaded libraries:

1 . Use #pragma handler() on the new thread
2. call fpreset() to set up the NPX
3. Make the function System linkage
4. End the thread with_ endthread() to clean up library storage.

Appe ndix C - C Set / 2 Compiler C-25 Sta t i c Linking and . MSG Fi les

Answers to Questions
<page C-13>

1] Why do we explicitly specify /Kb but not specify /W3 when we invoke the
compiler? What is the purpose of the /Q option? What is $ *?

a] The default is no lint testing, so we use /Kb to get that extra validation
of our source code. The default is /W3, which is the highest warning level.
The /Q option suppresses the banner. The $ * is a macro which means "take
the name from the left part of the item to be made by this statement. If we
are providing the dependency list for main.obj, then $ * would be "main".

2] Why do we route the output of the compiler to $*.err? What is the result of
this if there are severe errors in the compile?

a] Since we are not using workframe (although you are free to do so), we save
the error messages to a file so that we can bring up the errors and the
source file with the editor. For example , you could say EPM main.c main.err
and put both files in the ring. A file M.CMD in \OS20LABS says E m* .c
m* .err. There is also a L.CMD which says E lab * .c lab * .err. It just a trick .
Note that if you are using workframe, you do not want to route the output
to a file but want it to go directly to the screen.

If there are severe compiler errors, NMAKE will terminate with a 12 error and
you will not see the errors until you bring up t he .err files. Had we not
done this redirection, you would see the errors on the screen.

3] What is the purpose of /BASE:Ox10000. What other steps can be taken to
enhance the .EXE file in this manner?

a] The /BASE:Ox 10000 causes the linker to remove relocation fix-up records. We
do this because we know that OS/2 2.1 places the .EXE in at Ox10000. You can
actually see the layout of your .EXE by typing EXEHDR BROWSE.EXE. The end
result is that the . EXE file is smaller and loads faste r.

You can also enhance your .EXE file by removing debugging information,
specifying /EXEPACK to make the file smaller, and (of course) by dynamically
linking to the C runtime. Further, if you allow the compiler to optimize,
there is a significant shrinkage of the code size and a speed-up in
execution.

Generally during debugging we do not want to optimize and we do want
debugging information in the . EXE file. At some point we want to change all
this.

Appendix C - C Se t /2 Compi l er C-26 Answers to Questio n s

r-

r-

r-

r-

r-

r-

r-

r-

r-

r-

r-

4]

Answers to Questions

When using NMAKE, you can define a macro (string substitution) by writing
macroname = new string. You can reference the macro anytime with the
syntax $(macroname). Define a macro called cOptions and show how you would
use it in the makefile on page C-13. Why do this?

cOptions = / c / Ss / Ti / Kb / Q / Rn

browse.exe:

main.obj: $*.c
ice $ (c0ptions) / Fa $*.c > $*.err
type main.err

tool. obj : $ * . c
ice $(c0ptions) $*.c > $*.err
type tool.err

screen . obj : $*.c
ice $ (c0ptions) $*.c > $*.err
type screen.err

browse.exe: main.obj tool.obj screen.obj main.def
link386 / DE / NOI / NOL / LI / BASE:OxlOOOO main tool screen, browse,, ,main;

a] You might do this so that you could easily replace the compiler options when
you switch from debugging mode to production mode.

Appendix C - C Set / 2 Compiler C-27 Answers to Questions

28 Notes

Appendix C - C Set / 2 Compiler C-28 Notes

OS/2 2.1 for Software Developers

Appendix D

The OS/2 2.1 Desktop

0
Distributed .6.pplication112

0

~
~

HP LaserJet lllP • z .
IBM Ci'C++ Tools 2.0

0S12 S _i,.istem Pro gr ams Shredder Start Here

OS / 2 2.1 for Developers D-1

by Charles R. Chernack

The Desktop

2 Table of Contents

Chapter D - The OS / 2 2.1 Desktop

The Window List .
The Desktop Selection Menu
Desktop - Settings

Icons Flowed Invisible
Sort Order and Background Color

Setting up the Desktop - Command Prompts,
Starting Sessions with the Start Command

STARTUP.CMD and the Startup Folder
Start New Window Each Selection .
Cleaning up the Command Prompts Folder

Removing little-used Objects
Adding a Workshop Help Object

Work Areas

Appendix D - the OS / 2 Desktop D-2 Table of Contents 09 / 13 / 94

The Window List

This section contains some notes on using the OS/2 2.1 desktop. They have been
derived from experience with the desktop, rather than from book learn ing.

--r;

I
I

CTRL + ESC will bring up the Window List. You can also bring up the window list by
clicking both mouse buttons at the same time while the mouse pointer is on the
desktop (background).

You can change the size and position of the window list. OS/2 will remember this
information. You can override the memorized position by bringing up the window list
with the mouse (the window list is centered around the mouse position). To move the
window list put the mouse into the "Window List" title bar, and drag the window while
holding down the left mouse button. To size the window list, put the mouse on an edge
or corner of the window list and size while holding down the left mouse button.

The mouse buttons are technically mouse button 1 and mouse button 2 . You can set the
mouse for right or left handed operation using System Setup, Mouse, and Setup. We will
use left and right to indicate mouse button 1 and mouse button 2.

You can select an item in the window list by keying in the first letter of the item,
using the up and down arrows, or by clicking once using the left mouse button (LMB).
You can show an item in the window list by hitting ENTER, double click ing with the
LMB, or bringing up the pop-up above and selecting Show.

The pop-up will come up if you click right in the window list while an item is selected,
or if you use SHIFT+ F10. The pop-up is most useful to easily close windows directly
from the window list . You can dismiss the pop-up with ESC.

In subsequent pages, we will see how to name our OS/2 and DOS window and full
screen sessions, so that their icons will be easily recognized, and so that they will be
easy to select from the window list. We will also see how to have OS/2 place the
icons on the desktop instead of in the minimized window viewer.

Appendix D - the OS/2 Desktop D-3 The Window List

The Desktop Context Menu

If you click the RMB on the desktop, you
will get a desktop menu. The primary use
of this menu is to Open the desktop
settings, lock the desktop, Shut down the
system, and quickly get to System setup .

The sequence "click RMB" on the desktop
and "type d" seems to be the quickest way
to perform a system Shut down. It is thus
useful!

Alternatively you can do a keyboard
shut down. This requires that you select
the desktop from the window list, hit the
spacebar to deselect all desktop objects,
and then press SHIFT+ F10 to bring up
the desktop context menu.

If you have not previously set up to lock
the desktop , the first time you select
lockup now you will be asked for a
password (to unlock the desktop). This
is a convenient way to leave your system
without shutting it down, and to prevent
others from using your OS/2 system. You
unlock the desktop by typing your
password in. This can be different than
your keyboard (power-up) password.

You can also enter System setup quickly
from the desktop menu , rather than hunting
for it directly in the OS/2 System folder.

Appendix D - t he OS/2 Deskt op D-4 The Deskt op Selection Menu

--...

Desktop - Settings

You can bring up the Desktop Settings by clicking right on the desktop and then
clicking on the arrow to the right of Open and then cl icking on Settings. In
general, you can do anything with the keyboard that you can do with the mouse, so you
ought to try it both ways. Use the cursor keys (arrows) to go to Open and then
right-arrow to Settings. You can also go to Open by pressing the 0 key.

In the picture below, the icons are shown as Non-grid Normal size. If you select
Non-flowed you get a single vertical column of icons, whereas flowed provides
multiple columns. The bottom figure shows how I usually arrange my desktop.

,- --ci------ - ---~----------~---------0 - - ------------------~~-- --

Distributed Application/2 HP LaserJet ll lP IBM CIC++ Tools 2.0 Information Master Help Index Minimized
Window Viewer

0
Qpen
Befresh now

' OS/2 System Programs Shredder Start Here

t!elp [!!
Create ~hadow .. .

Joockup now
Shut _!!own ...
System setup

find ...
S~lect +
Sor! [!!
~rrange

~

I like to arrange my desktop as a vertical list of folder names, rather than as a set
of visible folders. OS/2 2 . 1 allows you to do this by setting the Icon V iew to
Flowed Invisible. If you do this, your desktop will look like the one below. Now,
while we have Desktop - Settings up, let' s change the Background colo r and
specify a Sort by name order.

Distributed Appli cation/2 ..
HP Laser Jet 111 P ra

IBM C/C++ Tools 2.0 ~ Information ~
Master Help Index '13
Minimized '13 Icon v iew
Window Viewer '13 Format Icon display '13 OS/2 System =r (!) Flowed 0 Normal size

Programs Cl Smell size
Shredder ~ ~ ['1' ~ =.:.me::: '!)[lnyi § i~ie]
Start Here

I Qhenge font...

Appendix D - the OS/2 Deskt op D-5

'{iew

l!!clude

§.art

~eckground

l'!!enu

f ile

1'.iindow

Qenerel

l,ockup

Deskt op I cons : Flowe d I nv i sibl e

Desktop - Settings (Continued)

I like to keep the folder list on my desktop in alphabetic order. You can do this by
selecting Sort and clicking on Always maintain sort order.

ra I.

=13
=13 Contents of the Sort menu

~ Object type
I
T Object J
~ lii4ifitji4,,Uj l
~ Data File IJ
~ Program File ~
~ I .2.J

~ Default sort attribute -p
T !Name lrl

Sort by attri bute

y
:; - 6 1ways maintain sort order

=13
:; I ~ndo I I Qefault I ~
~ + +

'.{iew

Include

.§_art

§ackground

~enu

Eile

~ind ow

Qeneral

!,ockup

You can set the background color of the desktop by selecting Background and then
Change color. You can also select a bitmap image for the background, but I find
those distracting. I prefer a color to a bitmap.

r..=-D_es_k_to~p_- _s_et_tin~g_s~~~~~~~.---~~2J..9.J

!)ndo I I lY~i~~~>>JI I Help I ~ _!'!olid color

'.{iew

Include

.§_art

§ackground

~enu

Eile

~ind ow

Qeneral

!,ockup

I often select a Solid color. The color or pattern you are selecting shows
up in the little rectangle which moves up and down the bar like a slider. When
you have chosen your background color, select it by closing the Edit Color dialog
(double click in the upper left hand corner).

Appe ndix D - the OS / 2 Desktop D-6 Sort by Name, Background Co l o r

,-

Drag Folders into OS/2 System

I generally remove folders from the desktop by
dragging them into OS/2 System. You can cl ick right
on the folder and delete it, but if it is a folder
that I might use someday, I generally drag and drop
it into OS/2 System. Select the folder with the left
mouse button, and then drag it with the right mouse
button into the destination folder.

In this example, I am dragging the Shredder and
dropping it into the OS/2 System folder.

Copy Command Prompts to Desktop, Move Drives to Desktop
The drives folder is the file manager. I always Move that out of OS/2 System and put it
on the desktop. I also Copy command prompts to the desktop. That's because I am going
to change command prompts and would like to keep a copy of the original in OS/2 System.
To copy, move, or create a shadow of an object in a folder, you can click right on the
object which brings up the open/copy/move menu. You can also move an object by dragging
it with the RMB. The target folders using the menu (as below) are all open folders.
However, when dragging an object with the RMB you can drop it into any folder.

0
Command Prompts

Desktop

0
Information

ifilll ifilll
~

imized Pr
'NViewer

Appendix D - the OS / 2 Desktop D-7 Cleani ng up the Desktop

Starting Sessions with the Start Command

You can use the START command from an OS/2 window or an OS/2 full screen to
start another session . You can view the syntax of the START command by typing HELP
START (shown below).

OS/2 Command Reference>,.~" "' '"'· • ... '· 1 Ser,.,. ices Qptions !::!e~ ---~~ ---- - ------I ST ART - Start Programs Automatically 0

1! •
Starts an OS/2 program in another sess ion.

: I

The primary use for START is to automatically start programs at system startup. The
special batch file, STARTUP.CMD, allows you to do thi s.

To imbed redirectional signals into the command sess ion, enclose the command and r J
command inputs in quotation marks.

START
[J!W&fil J ~ ~~ ~ E /F ~ title" / B

L / PGM J ~ / FS ~ E /l•IP.X j ;:,l~t; /l-iIN

/ DOS

Start "Charlie's Window" /F will start an OS/2 window with a "title" in the Foreground.
You can also start a window minimized using /MIN . In the example below, Charlie's
Window was started in the foreground. Then we clicked on the initial window and
started "Edit Window" minimized. Then we pulled up the window list with CTRL + ESC.
Note that the window titles are in the window list.

1~ 1
~

Edit Window

v Utititm•m == EJI
Desktop - Icon View
COLLAGE.EXE - Collage PM
Command Prompts - Icon View I
OS/2 Window - OS/2 Window

1
Edit Window ..I I
~<-,~~~~~~~21-> .

When a window has a name, you can easily switch to it by bringing up the Window List
even if you have a very busy desktop. If you name a window, the name appears in the
title bar, on the icon for the window, and in the window list. If you name a full
screen you still get the name in the window list and on the icon. Thus naming is a
way to rationalize the desktop.

Appendix D - t he OS /2 Desktop D-8 Using the START Command

STARTUP.CMD and the Startup Folder

On power-up OS/2 2.1 opens any folders and starts any program objects which
you have placed into the Startup Folder. In addition, OS/2 2.1 executes file
\STARTUP.CMD, which may include START commands.

Thus there are two other ways to start sessions. You can open the startup folder
(from OS/2 System). Put shadows of folders to be opened on power-up into the startup
folder. I use shadows in the startup-folder so that if I change the folders the
changed folder (rather than an old copy) will come up on power-up.

My own STARTUP.CMD contains a statement to bring up a named OS/2 window
minimized, and to start a minimized DOS session and initialize the session by running
batch file refload.bat, and to start Sidekick in a minimized DOS Window. An EXIT
at the end of STARTUP.CMD eliminates the startup OS/2 session once the STARTUP.CMD
is processed.

In the figure below, you can see a shadow of Command Prompts in the Startup
folder which comes from OS/2 System. I also modify CONFIG.SYS to include the
statement SET restartobjects = startupfoldersonly. This prevents objects which were
up on the desktop from automatically starting when I power-up OS/2 . I prefer that as
I always start with the same uncluttered desktop. Later we will look at Work Areas, a
technique to bring up a set of folders or programs associated with a specific project.

Command Prompts
Distributed Application/ 2

HP LaserJet I I IP

IBM C/C++ Tools 2.0

OS/2 System

Programs

Command Prompts

Appendix D - the OS/2 Deskt op D-9

Command Prompts Drives Information

Shredder

\.I/ ork Areas

+- CONFIG.SYS

STARTUP.CMD -- Star t up Fol der

Once we place a copy of the Command Prompts folder onto the desktop, it is time to
modify the default settings. If you start an OS/2 Window and then try to start
another from the Command Prompts folder, you will simply activate the OS/2 window
which you currently have open. This is fine for Compuserve (a program you only want
to run one copy of), but not fine for OS/2 windows. Click right on OS/2 Window in
the Command Prompts folder, and open the Settings. Select Window and Minimize
Window to desktop and Create new window. The result will be that every time you
click on OS/2 Window you will get a new one, and the windows will minimize to the
desktop .

. .. ··-· .!::!elp ~ V' f'rogram I
Create another ~ ' ·-~ o
!;opy ... DOS Full Screen
Move ... DOS Window

@ OS/2 Window - Settings Create J.!hadow ... Dual Boot

-!,, Delete .. .
0512 full Sc reen

........: .. J:i
i: Erogram WI N-05/2 Full Screen

-i3 Session
I ii

T.'.
~s sociation ~

~-Minimized button behavior Y:!indow I
y 0 !:::!ide window eneral I
~ Q Minimize window to \liewer '

~ @ Minimize >ffindow to desktop

f-i-Objed open behavior
-ci ':J Display ~xi sting window

~ ,:!) Create new window i I ~ndo I I Qefault I ~
I:+ ll1'5ll!

If you click right on the desktop and bring up the desktop menu, you can then select
System Setup and System. If you double click on System you will get the System -
Settings dialog which will allow you to set Logo timeout, etc. In the Window
selection you can change the global defaults for all windows. I usually leave this
alone and then for individual items I will go in and set "Create new window (as above).

t=Q.~S~ys_te_m_Se_tu~p_-_lco_n_V_ie_w ________ ~ 0 o I

~ ~ ~ /t m ~j
~:lm:ll!l!l:ml!!illlllllllllllllll 112::~0 ~

~ !Button appearance for windows-----i
=['. L 0 Hide !;!utton @l Minimize b~
=['. =['. Animation M1nim1ze button behavior

~ l!l £ nabled 0 !:::!ide window
• 0 Minimize window to \liewer

; 0 D!sabled :!) Minimize >ffindow to desktop

Objed open behavior-----~

'!) Display ~xi sting window

'.J Qreate new window

],ago

Qeneral

Appendix D - the OS/2 Desktop D-10 Start New Window Each Selection

Once we have copied the command prompt s folder t o the desktop we then set the
icons to flowed invisible. I generally set the background to yellow, and I set sort
to Always maintain sort order (that has been done in the second figure below).
I size and position the command prompts folde r, and then close it so that OS/2 will
remember the size and position.

~ Y Command Prompts

c:J Distributed Appli cation/ 2

Q HP LaserJet lllP

4 IBM CIC++ Tools 2.0

ii OS/2 System

I then click right on Dos from Drive A: and
delete it. Remember that if I want that featu re I
can always get it from the original Command
Prompts folder still in OS/2 System.

csr-command Pro :: 'EJ
1•&1t:§@ll5131§§r
OS/2 Window

DOS Full Screen

DOS Window
WIN - OS/2 Full Screen
DOS from Drive A:

Dual Boot

.2.1

Open ri1 ' ' ' • ' ..:.:.:EJI
Help i.±i \;;

r11·~1••1•wJt·&•
Create a,!!other i.±1 DOS Full Screen ,
!;opy ...

DOS Window

I~~~~ B;;l: Screen I
.----r"[OS/2 Window

1
WIN - OS/2 Full Screen I

> r J

Adding Workshop Help
I am now going to make an entry in Command Prompts called Workshop Help. This
entry will start the workshop help. To create the entry I click right on OS/2 Window
and Copy it to the same folder Command Prompts chang ing its title to Workshop Help.

" Command Prompts - Copy

Select a folder as the target for this operation.

_J

Appendix D - the OS / 2 Desktop D-11

Qpen +
!:jelp ..:tJ
Create a!!other _:B
!;opy ...
.!!!ove .. .
Create !!hadow ...

' >

Changes t o Comma n d Prompts

Adding Workshop Help (continued)

I open the Settings of Workshop Help by clicking right on it. We will demonstrate two
two different ways to fill in these settings. In the first method, set the Path and file ,........_,
name to C:\OS2\VIEW.EXE, the Parameters to OS20HELP.INF, and the Working directory
to C:\OS20LABS\HELP. VIEW.EXE is the program which brings up and displays all of
the on line references. Normally it uses the BOOKSHELF environment variable to find ,........_,
the path to the .INF files. However, the workshop help in C:\OS20LABS\HELP is not
in the BOOKSHELF environment, so we set the Working Directory.

~[lJ~Bl!lmmBlllll!••••••••[~:;, _E:Jo 01 command 1~.QJ

:::3 Optional
Parameters:

ios20HELPINF

Working directory:

lc\OS20LABS\HELPj

J:rogram

.§ession

t,ssociation

DOS Ful L Screen
DOS Window
Dual Boot
05/2 Ful l Screen
OS/2 Wi ndow
WIN-05/2 Full Screen
~

I 11 Li

Besides the Workshop Help, we want to view the Text Supplement and we want to start
the Review Questions. We can do all of these operations by running command file
V.CMD which is in C:\OS20LABS. It is a powerful technique to put a .CMD file name
into the Path and file Name.

Required

Path and fi le name·

lc\OS20LABS\VCMD 11 Eind ... I

Parameters

Working directory:

Appendix D - t he OS/2 De s k t op D- 12

Ero gram

.§ession

t,ssociation

:t,.'.indow

Qeneral

Change s t o Command Prompt s

Work Areas

A work area is a very useful capability of t he 05/2 desktop. You place a set of
program objects which you use for a specific task or project and place them into a
work area folder.

Generally when you open objects from within a folder, you can then close the folder
and the objects remain open. That is, there is no parent-child relationship between
folders and the objects created in them.

Any folder can be made into a Work area . This is done by going to the File selection
in the folder's settings, and checking Work area. The operation of this "work area"
folder is identical to other folders, with an exception: if you minimize the work area
then all objects opened out of the folder will disappear off the screen (effectively
minimizing into the folder) . When you restore the work area folder then all previously
open objects will be restored to their previous size and position.

If you close the work area folder then all objects opened out of that folder will be
closed. When you reopen the work area folder than all objects previously open will be
reopened.

Now what is the use of this? Well , when using my computer I have various tasks I do.
Mostly they involve preparing class material. I have a work area for 0520 HELP which
contains a Dos Edit window in the appropriate directory, an 05/2 IPF Compile window in
the same directory, a screen snapshot program and a paint program. That is, the set
of objects I use to work on that project all appear in one work area folder . Thus it
is very easy to restore my working environment for a particular project .

I have one folder titled Work Areas which is NOT a work area. It holds other folders which
are work areas. For example, 0520 HELP cont ains 5 objects which I use when preparing
the workshop help. 0520 LL contains the Linkway Live tools I use for preparing the review
questions. Note that 0520 HELP is a work area.

Command Prompts

Distributed Application/2

Drives

HP LaserJet lllP

IBM C/C++ Tools 2.0

OS/2 System

Programs

Utilities

Work Areas

Work Areas ..::...EJ]
I CWP_PF2

I MP60 LL

[1&f.li1dl!al@
0 820 LL

OS22 DOC

OS22 HELP

·0 1 OSlO HELP-.:- Settings

~ '""i""
~ fiPhysice.I name - - --,

~!Pe.th : ,j
t=i'3 C\DESKT OP\Work_Are

~ Ne.me:
' 0 820 HEL

t___:__- - ---- -

- YY'.ork aree.

- He1;; -1

o••&t111:1:11wm11411w~~
ll-''IH·li'tugp PAltff.BAT

IPFC Window PAltffl.BAT I 0820 PE2
__JI

Appendi x D - the OS / 2 Desktop D-13

'.:{iew

l!!clude

~Ort

Menu

Eile

Y'.{indow

Qeneral

:: ol

Wor k Ar eas

Work Areas (continued)

The first figure below shows three objects open out of the OS20 HELP work area.
PAINT.BAT is a full screen DOS session contain ing Publisher's Paintbrush . In the
second figure below, the work area OS20 HELP was minimized taking with it all of the
objects that had been opened from that folder .

Command Prompts
Distributed Application/2
Drives

I~
PAIN T.BAT

Command Prompts

Distributed Application/2
Drives

HP Laser Jet 111 P
IBM C/Ct+ Tools 2.0
OS/2 System
Programs
Utilities

Work Areas

Appendix D - the OS / 2 Deskt op D-14

COLLAGE.EXE PAltff.BAT
I IPFC Window PAllHl .BAT
lt&f.f111@5'

gj
0520 HELP

Wo r k Ar eas

,-

OS/2 2. 1 for Software Developers

Appendix DLL

Dynamic Link Libraries

Some material in this chapter
courtesy IBM Toronto Lab

OS/2 2.1 for Developers DLL-1

by Charles R. Chernack

Dynamic Link Libraries

2 Table of Contents

Chapter DLL - Dynamic Linking

Technical Background
Variable Storage in the Appli cation and the DLL
Static, Load Time and Run Time Binding
Review Questions
Toolkit On Line Reference - the DATA statement
DLL Instance Data - DATA MULTIPLE NONSHARED
DLL Initialization and Termination

CRT Init Case 1 - Static Linking no DLLs .
CRT-Init Case 2 - Dynamic Linking no DLLs
CRT-Init Case 3 - Dynamic Linking, user DLLs

DLL Initializaiton and Termination
CRT Init Case 4 - Exporting the C Runtime
CRT-Init and Statically Linked DLL .

LIBRARY [] INITGLOBAL TERMGLOBAL
DLL Instance Data - DATA SINGLE SHARED
Using a DLL to Manage a Resource

Answers to Questions

DLL-1

DLL-3
DLL-9
DLL-12
DLL-13
DLL-15
DLL-16
DLL-17
DLL-18
DLL-19
DLL-20
DLL-21
DLL-22
DLL-24
DLL-25
DLL-26
DLL-27

DLL-28

Appendix on Dynami c Linking DLL-2 Table of Contents 09 / 13 /9 4

Technical Background

The dynamic link library capability is an essential component of the operating
system. Subroutines or API required by running programs need not be linked into the
EXE file of the application, but may be stored as DLL modules which can be attached
by each application at (1) load time; or (2) at run time.

DLL routines are not programs. They are procedures which run in the context of the
calling thread and calling process. Any number of processes can attach a DLL. The
use of DLLs provides for code sharing between processes, resulting in smaller .EXE
files on disk and lower run-time RAM loading.

OS/2 Code Sharing

If you load multiple copies of the same .EXE file from the same directory, OS/2
automatically shares the code and read-only data. But if two different applications
are loaded, then of course OS/2 does not share the code. OS/2 has no way of knowing
that statically linked library routines inside those applications are, in fact, common
procedures.

If you have common procedures which you would like to share among applications,
rather than statically linking those into each application, you may make DLL modules
out of those routines. The code is then automatically shared between all attaching
processes.

Multi-Threading and Dlls

The DLL is written in the same way as any procedure you might statically link into
your process. If you want that procedure to be called by multiple threads from the
same process, you need to make it reentrant (all variables in the stack).

DLL Data Segments

Generally each time a DLL is attached, any static or global data declared in the DLL
is put into unique instance data for that DLL for that process. Thus the fact that the
DLL is being used by many processes is irrelevant. DA TA MULTIPLE NONSHARED
gives you unique copies of the DLL instance data, on a per-process basis.

DLL Coupling with the Application

The DLL can export code labels and pointers to global variables. Thus an application
can directly call procedures within the DLL, and it can directly access variables
within the DLL. (Variable referencing is very ve ry seldom used). However, the
application cannot export symbols to the DLL -- they must be passed in via calls to
procedures within the DLL.

Appendix on Dynamic Linking DLL-3 Technical Background

How a DLL is Made

A DLL is a creature of the OS/2 linker (LINK386) and the OS/2 Loader. These packages
work together to create the final runnable program in memory. If the linker is not
going to finish the job -- not going to statically link procedures into the .EXE file
-- then it must pass information to the loader to do the job at load time.

To make a DLL you should:

Tell the compiler: specify /Ge- when you compile the DLL.

Tell the linker to make a .DLL rather than a .EXE: put LIBRARY rather
than NAME in the .DEF file

Provide the linker and loader with information they need: list the
names of all procedure entry points you want to make available to the
application using an EXPORTS statement in the DLL's module definition
file.

Optionally make an import library from the module definition file.

In the example below, source file UTIL.C is converted to UTIL.DLL and the the module
definition file UTIL.DEF is converted to UTIL.LIB, the import library:

UTIL.C

fillstr(pszString)

UTIL.OBJ

PUBLIC f i llst r

UTIL.DLL

EXPORT fi llst r

UTIL. LIB

The Linker can produce an EXE or a DLL file. The LIBRARY statement in the module
definition file causes the linker to produce a .DLL file. The EXPORTS statement in
the module definition file lists which symbols are to be made available to routines
which call the DLL.

At load time the OS/2 loader will search the LIBPATH for the requested DLLs.

Appendix on Dynamic Linking DLL-4 Technical Background

Making the . EXE

In order to make an .EXE file which uses the DLL, you must statisfy LINK386 so that
the procedures in the DLL are not considered undefined externals at link time. You
can do this by adding IMPORT statements in the module definition file used to create
the EXE, or by using IMPLIB on the DLL' s module definition file to create an import
library.

You also must put the DLL in the LIBPATH so that the OS/2 loader can find it. We
set LI BP A TH to .;C:\OS2\DLL;... The ".;" allows us to put the DLLs we create in our
own directory.

MAIN.C UTIL . DEF

LIBRllRY UTIL
EXPORTS

f i11str fillstr(pszStringJ ;

MAIN.OBJ
EXTRN fillstr

Mll I N . DEF
MAIN.EXE
IMPORT UTIL.fillstr IMPORTS

U TI L. f i llst r

Procedure fillstr will not be available at LINK time as it will come from a DLL when
the application is loaded. In order to satisfy the linker (and to not get an
unresolved external message) the linker needs to be told that procedure fillstr will
be acquired later.

The module definition file for the application may specify that fillstr will be
imported from a DLL using the IMPORT statement . The IMPORT statement provides the
module name and procedure name: in this example it specifies that module UTIL.DLL
will be providing procedure fillstr.

Alternatively, an IMPORT LIBRARY may be prepared which contains the same information:
that procedure fillstr will be provided in module UTIL.DLL. The import library is
prepared using \TOOLKT21 \OS2BIN\IMPLIB.EXE. The input to IMPLIB is the module
definition file which was used to create UTIL.DLL. See VIEW TOOLINFO IMPLIB.

Appendix on Dynamic Linking DLL - 5 Techni cal Background

DLL Initialization

Generally there is no need for DLL Initialization. If you want initialization, you
can specify that a routine you provide called DLL lnitTerm is to be called by the
operating system twice: once for initialization and-once for termination.

(1) If you have a DLL lnitT erm routine it will be called by default
every time a new -process attaches or detaches (so long as you have
specified instance initialization).

(2) If you do not have such a routine, the C Set Compiler will provide
a default one.

(3) You can specify that rather than call the DLL lnitTerm function
every time any process attaches or detaches~ you-only want it called
once the first time any process attaches (global initialization) and
that you want it called only once when the last process detaches
(global termination). This is the default and generally you do not
want this option.

DLL Termination

If your DLL has allocated resources on behalf of the application, such as opening
files or driving a printer or carrying on a dialog with the user, the DLL may wish to
know that the application has terminated. You can use the standard DosExitlist and
atexit handlers.

While DosExitlist handlers work (a carryover from 1 .3), a DLL which has registered
an exitlist will not be freed when DosFreeModule is used. It will hang around until
the process terminates.

DLL lnitTerm will also be called upon termination (either of any attaching process
or when all processes using the DLL terminate).

C Runtime Initialization

If the DLL is prepared using the /Gd option, then the DLL itself will dynamically
link to the C runtime. The DLL version of the C runtime has its own DLL lnitTerm
function and initializes itself. However, this initialization may occur after the

DLL lnitTerm function in your DLL is called. Thus, if you want to use C
Applications Library functions inside the init case of DLL lnitTerm, then you must
call _CRT _I nit yourself. -

Appendix on Dynamic Linking DLL-6 Technical Background

DLL InitTerm, LIBRARY dllname INITINSTANCE TERMINSTANCE

A DLL or an EXE file has a record which specifies the initial value of CS:EIP. You
can see this if you run EXEHDR on the DLL or EXE. In the case of a DLL, the fact
that the CS:EIP field is non-zero means two things: (1) it supplies the address for
the DLL lnitTerm function, and (2) it acts as a flag to say that there is an
initialization - termination entry point.

Thus DLL lnitTerm is NOT an entry "name" known to OS/2; it is known to the compiler
and the compiler puts a record in the .OBJ file specifying the address of

DLL_lnitTerm as the CS:EIP entry value.

There are two other flags in the DLL file which can be viewed using EXEHDR. These
specify whether there is instance or global initialization, and whether there is
instance or global termination.

Library :
Module type:

LAB4CDLL
Dynamic link library
Per-process initialization
Global termination

#pragma data_seg (segmentname), SEGMENTS statement in .DEF file

DATA MULTIPLE NONSHARED in the module definition file for the DLL specifies that the
DGROUP data (global data and static variables) will be replicated for each process
which attaches the DLL. But let's say that you want to have some data which is
shared between all copies of the DLL, and some data which is private to each instance
of the DLL. You may do that by creating new named data "segments" using #pragma
data seg, and then you may specify MULTIPLE NONSHARED or SINGLE SHARED in the
SEGMENTS statement of the module definition file.

The figures below are from the advanced class lab4c. The C code on the left from
LAB4CDLL.C shows the use of #pragma data seg to draw lines in the global data
declarations of a program to force data items Into specific named segments. The
.DEF file on the right shows the use of the SEGMENTS statement to create "common"
or shared instance data as well as to create process specific copies of a data
item. Bottom line you control your DATA segment using the DATA statement in your
module definition file, and you can create other segments with desired
characteristics as shown below.

#pragma data seg(globdata)
ULONG ulGlobal_Shared;

#pragma data seg(instdata)
ULONG ulGlobal_Instance;

#pragma data_seg()

from LAB4CDLL.C

LIBRARY LAB4CDLL INITINSTANCE

SEGMENTS
globdata CLASS 'DATA' SHARED
instdata CLASS 'DATA' NONSHARED

from LAB4CDLL.DEF

Appendix on Dynamic Linking DLL-7 Technical Background

Review of Code/Data Sharing

OS/2 CODE SHARING
CASE 1: RUN SAME . EXE TWICE

I

STATIC
I DATA I

STATIC
DATA

I MAIN CODE I

I SUBS CODE I

I
STACKS

I I
STACKS

OS/2 CODE SHARING

I

I

If the same .EXE file is loaded twice, the code
will only be loaded once into RAM. Data and
Stacks associated with the . EXE file will be
replicated for each instance of the .EXE file, but
the code (being a pure segment) may be shared
between all instances of the same application.

CASE 2: DIFFERENT EXEs WITH COMMON SUBS

STATIC
DATA

MAIN CODE

SUBS CODE

STACKS

STATIC
I DATA

MA IN CODE I

SUBS CODE I

STACKS
I

OS/2 CODE SHARING

If two different .EXE files are loaded, and they
happen to have some common subroutines statically
linked into the . EXE, there is no way for OS/2 to
tell that the code is in fact common. Thus two
copies of the code are loaded.

CASE 3: DIFFERENT EXEs WITH DLL SUBS ,..---

I
STATIC

I DATA I
STATIC

I DATA

I MAIN CODE I

I
STACKS

I

I MAIN CODE I

I
STACKS

I

If two different .EXE files are loaded, and they
attach a DLL which has common subroutines, then .----.-.
OS/2 will only load one copy of the DLL into RAM.

I DLL CODE
I

Appendix on Dynamic Linking DLL-8 Review of Code/Data Sharing

Variable Storage in Application and DLL

CHAR a;
rnain (void)

{

CHAR b;
static CHAR c;
dllsub(a,b,c);

CHAR dlldata[20];
dllsub(CHAR a, CHAR b

{

CHAR dlla;
a = Ix I;

Analyze where variables a, b and c from the application are stored. Can the DLL
reference these variables by name?

Analyze where array dlldata and variable dlla are stored. Can the application
reference these variables by name?

ANSWERS:

Variables a and c are stored in the application data. Variable b is stored in the
application stack. The DLL cannot reference symbols in the application by name.
There are two reasons for this: (1) you cannot export symbols from the application;
and (2) even if you could, it would be impossible to reference it from the DLL. For
example, let's say that variable "a" could be exported. Some applications would have
a variable "a" and some would not. If applications had a variable "a", it would
likely be in a different linear address for each application. There would be no way
that the fixup could be handled. That is, the address of variable a could not be
resolved when the DLL was loaded it.

Array dlldata is in DLL Data (DLL Static Data), and variable dlla is in the stack of
the application thread which called the DLL. The application could reference dlldata
"by name" only if the DLL exported a pointer to that static variable.

Appendix on Dynamic Linking DLL-9 Variables in Application and DLL

DLL Shared Code, Instance Data

OS/2 CODE SHARING
CASE 4: SEPARATE EXEs, Dlls with STATIC DATA

I
STATIC

I DATA I
STATIC

I DATA

I MAIN CODE I I MAIN CODE I

I
STACKS

I I

STACKS
I

DLL STATIC DLL STATIC
DATA DATA

I
DLL CODE

I

If two different .EXE files are loaded, and they attach a DLL which has common
subroutines, then OS/2 will only load one copy of the DLL into RAM. If the DLL
itself has any global variables or any static data, then there will be DLL INSTANCE
DATA (DLL static data).

Since there are unique copies of the instance data on a per-process basis, the DLL
may be called from different processes with data isolation. However, if the DLL is
called by multiple threads in one process, then classic methods of protecting
single-copy data (semaphores, critical section, etc.) must be used.

Thus the subroutines in the DLL operate as if there were only one process attaching
the DLL, even if many processes attach the DLL. However, like any subroutine, the
programermust be careful of reentrancy issues. The reentrancy issue is always with you
in a multi-threaded process.

Appendix on Dynamic Linking DLL-10 DLL Shared Code, Instance Data

.-

~

r---

,..........

Shared Code and Data in OS/2 2. 1

PROCESS #1

LINEAR
ADDRESS

SPACE
LOW

page

PRIVtliTE
directory

MEMORY

HIGH ------ 512 MB

PHYSICAL
ADDRESS

SPACE

8-64 MB of
PHYSICtliL RtliM

PROCESS #2

page
directory

LINEAR
ADDRESS

SPACE

PRIVtliTE
MEMORY ~

~*~ SHtliRED ~~
~OBJECTS~

Memory objects allocated using DosAllocSharedMem, DLL code segments, and DLL
data segments are stored in the high address space. The same rules apply to both:
once an object is assigned a linear address, that address space is reserved for all
processes. The address space is only released when the reference count of the
memory object goes to zero.

Appendix on Dynamic Linking DLL-11 Review of Code / Data Sharing

Static, Load Time, and Run Time Binding

Static Load Tirne

.EXE

IMPORT LIST

LO"D TIME

EXPORT LIST

.DLL

Run Tirne

8 D namic Link Modules
DosFreeModule
DosQueryProcAddr
DosloadModule

RUN TIME

With static linking, the linker binds the subroutines and their data into the .EXE
file. The resulting . EXE file is self contained.

With load time binding, the .EXE file lacks required subroutines and those entry
points are listed in the . EXE file as import records. The OS/2 loader follows the
LIBPATH to find the corresponding DLL modules.

With run time binding, the .EXE file does not specify the imports. At run time the
application can attach the required DLLs using DosloadModule; find the addresses of
the required subroutines using DosOueryProcAddr, and use indirect calls through
pointers to actually call the subroutines. When the DLL is no longer needed, it can
be detached by using DosFreeModule.

The DLL will not detatch after a DosFreeModule if the DLL has used DosExitlist
to register an exitlist handler. This is one reason why DLL_lnitTerm is preferred.

Appendix on Dynamic Linking DLL-12 Static and Late Binding ,-

,-- 1 3 Questions on Code and Data Sharing

11 When an application executes DosAllocSharedMem linear address space is
used in which processes? When will that linear address space be freed?

al

21 When an application attaches a DLL, linear address space is used in which
processes? When will that linear address space be freed?

al

31 Under what circumstances will code be shared between two processes which
use static linking? What do you have to do to get this to happen?

al

41 Under OS/2 1.3, how could you share statically bound data segments
between processes? Why would you want to do this? What is an easier (and
perhaps safer) way to share data?

al

51 How can you get .EXE files with different names and some common code to
share the code?

al

Appendix on Dynamic Linking DLL-13 Questions on Code/Data Sharing

14 Questions on Code and Data Sharing

6] What is the primary benefit of writing "library" or common procedures
as DLL modules?

a]

71 Name three ways that an object file containing "library" or common
procedures can be attached to a process.

a]

8] What are the benefits of run time binding?

a]

[l Check your answers on page DLL-28.

Appendix on Dynamic Linking DLL-14 Questions on Code/Data Sharing

Toolkit On Line Reference - DATA statement

JJ ''
... D

Se~ices Qptions _!:!elp_

~ '' a D 11>. ' UNK386 - lntrodu1:tion I a I D

Introduction LINK386 is used to comb ine object files and standard library
--;

Starting LINK386 files into a single file: an executab le file, a dynamic-link
I Syntax library, or a device driver. The output file from LINK386 i s not

DATA ATTRIBUTES:

Default Libraries constrained to specific memory addresses. Thus. the I

Filenames operating system can load and execute this file at any I
I PRELOAD or LOADONCALL

Module Definition Files convenient address.
' Basics

Example LINK386 Input r Rules
ii!·ll ~ 1 1l~ 11m LINK386 uses the following files as input:

READONL Y or READWRITE
Options

Using o One or more object files that are linked with any optional
Numeric Arguments library files to form the executable file. Object files usually
Environment Variable have a .OBJ extension. NONE, SINGLE, or MULTIPLE

OS/2* Considerations
Output LINK386 accepts object files compiled or assembled for
Error Messages 80386 or 80486 microprocessor. Object files must be in the I Object Module Format (OMF). which is based on the lntel(R)

I

8086 OMF.

o One or more library files. The library files contain object v'

SHARED or NONSHARED

__J _J

I Pr~vious I ~earch ... 1 erint ... 1u;;dex 11Con!ents I1 .!!ack l I forward I

The data attributes refer to the "automatic data segment" or DGROUP data segment
emitted by the compiler. Static data and global variables are placed there.

OS/2 2.1 does not honor PRELOAD. Everything is LOADONCALL. OS/2 2.1 uses page
demand loading and does the fixups on code every time the code is loaded. Thus
code is truly discardable. For READONL Y data, OS/2 2. 1 will automatically share
that data between applications. This is also a way to save RAM.

Classically NONE, SINGLE or MULTIPLE refers to DLL Static Data (DLL Instance Data).
To make each attaching application have a new copy of the DLL data, you would
specify DATA MULTIPLE.

Classically SHARED or NONSHARED refers to application data. You could purportedly
convert you static data into a form of "common" by using DATA SHARED.

We use DATA SINGLE NONSHARED for our DLL Instance Data. This is technically wrong,
in that the NONSHARED refers to application data. But it works and it is safe.

Appendix on Dynamic Linking DLL-15 DLL with Instance Data

DLL Instance Data - DATA MULTIPLE NONSHARED

PROCESS 11

DLLCODE

DLLDATA

LINEAR MEMORY

DLL
CODE

The diagram above represents linear addresses.

PHYSICAL
MEMORY

DLL
CODE

"

PROCESS 12

DLLCODE

DLLDATA

Why MUST the DLL Code be at exactly the same linear address in each process?

Why MUST the DLL Data be at exactly the same linear address in each process?

How is the physical address map different than the linear address map for the DLL and
its data segments?

ANSWERS:

There is only one copy of the DLL code in physical RAM. It is shared between all
attaching applications. This is what we call SHARED ADDRESS - SHARED STORAGE
memory.

When the DLL code is loaded into memory, there are fixup records which are built to
allow the DLL to reference itself. The DLL is effectively in ROM (read only memory)
once it is loaded in, and thus every process must find the DLL at the same linear
address (else the fixups would not work). This is called SHARED ADDRESS -
SHARED DATA (or simply shared-shared).

The DLL may reference its data. Thus, the data too must always reside at the same
linear address. That is, once the address space has been allocated for the DLL data,
then that data must appear there for every instance of the DLL.

The physical address map shows a separate copy of the DLL instance data for each
process which attaches. That's why it's called instance data. However, in the linear
address map there is but one address assigned to this data. This is called SHARED
ADDRESS - PRIVATE DATA (or simply shared-private).

Appendix on Dy namic Linking DLL-1 6 DLL with Instance Data

DLL Initialization and Termination

PROCESS 11

APP!
CODE

Dll

DLLCODE

DLLDATA

Sub CA, 2 00000);

DLL
CODE

§ EXITLIST

PROCESS 12

APP2
CODE

DllSub CA, 20 00000);

DLLCODE

DLLDATA

If the DLL must allocate 200,000 or 2,000,000 bytes of storage to keep a working copy
of the data array A, how big should it make the static DLL DAT A?

If the DLL allocates resources on behalf of the attaching process, how does it know
when to deallocate the resources?

ANSWERS:

There should be no static data array. The array should be allocated dynamically using
DosAllocMem. The DLL would use static (process specific instance) dat a to keep
track of the buffer address and buffer length, but the memory would be allocated in
the private address space of the process by the DLL which would execute a
DosAllocMem on behalf of the calling process.

The DLL should deallocate the memory if there is a DosFreeModule. That is, if the
process terminates the DLL early, then the memory should be freed by t he DLL (so it
will not hang around). If the process simply terminates without freeing the DLL, then
OS/2 will free the process' private memory (including t he memory which was allocated
by the DLL).

Appendix on Dynami c Linking DLL- 1 7 DLL with Inst a nce Da ta

CRT _lnit with Static Linking, No User Dlls

main

THE APPLICATION

exit(ll)

STARTUP CODE
Register _Exception for thread 1
_CRT_Init - initialize library
Command Line Parsing
main
if r etu rn from main:

call atexit routines
DosExit (ExitProcess ,

_CRT_Init

IBM C SET/2
APPLICATIONS
LIBRARV

The startup code is
part of the .EXE file .
It calls the CRT Init
entry to initiali;e
the applications
library .

The application
should return to the
startup code using
exit() so that the
atexit routines may
be called. DosExit
will be called by
the startup code .

When the application is compiled with /Gd- and without the /Rn option , the
applications library (single or multi-threaded) is statically linked into the .EXE
file. Initialization is from the C Startup Code.

CRT lnit does process-specific library initialization. For thread 1 exceptions, the
C exc-eption handler is registered by the startup code. For all other th reads, the C
exception handler is registered by beginthread. beginthread is roughly equivalent
to a DosCreateThread and #pragma handler.

Appen d i x o n Dynami c Linking DLL- 1 8 CRT Init Case 1

r-

CRT _lnit Application Dynamic, No User Dlls

APP. EXE
STARTUP CODE

Register Exception Handlers
Ca 11 _CRT _In it
Command Line Parsing
main
exit

main

THE APPLICATION

The DLL version
of the library
is initialized
by OS/2 2. 1 as
it is loaded .

OS/2 2. 1 calls
DLL InitTerm

;hen;ver any
app 1 icat ion
attaches the
Library.

DDE4MBS . DLL

DLL_InitTerm
Call _CRT_Init

CRT_Init
IBM C SET/2
APPLICATIONS
LIBRARY

If the application is dynamically linked to the IBM C Set/2 applications library, the
library initializes itself. The call to CRT I nit from the startup code has no
affect, in that the startup code will-not call "out of module".

Append i x on Dyna mic Linking DLL- 19 CRT Init Cas e 2

Application Dynamic, User Dlls

APP. EXE

STARTUP CODE
Call - CRT_Init
rnain

I
rnain

THE APPLICATION

YOURSUBS.DLL
DLL InitTerrn - -
Call -CRT_Init

Other DLL Entry Points

I

When your application
and your DLL both link
dynarnically lo the IBM
C Set/2 Applications
Library, your startup
code is run AFTER the
two Dlls have been
called. Thus your call
to _CRT_Init is not
helpful; it is OK .

Your OLL InitTerrn
rnay be c.;iled before
the one in the library .
Thus, if during that
routine you wish to use
the l i brary, you rnust
call _CRT _Init.

The DLL version of
the library is
self-initializing.
However , if you
call it f rorn your
_OLL_InitTerrn then
you rnust initialize
it yourself .

DDE4MBS.DLL
- DLL_Init Term

Call -CRT_In i t

- CRT_Init
ORDER : IBM c SET/2
1. Dlls APPLICATIONS
2. The Application LIBRARY

When the application AND YOUR DLL are compiled with /Gd and without /Rn the
applications library and YOUR DLL are both dynamically linked into the .EXE file.
Your DLL uses the dynamic version of the applications library as well.

The DLL version of the C Applications Library is self-initializing: it has its own
DLL lnitTerm entry point. However, you must call CRT lnit if you plan to use any of

the library functions while your DLL is being initialized. That's because you might
end up calling the library before it initializes itself.

The DLL should always handle its own erro rs. It should not return a signal or an
exception to the calling thread but should return an error code . Thus a DLL might want
to register its own exception handlers and de-register them on the way out . See
#pragma handler in appendix E.

If you dynamically link to different versions of t he library (say your application
links to the single threaded version and your DLL links to the multi-threaded
version), you have two library environments. You need not worry about this problem
if the DLL registers the C exception handler Exception when it is entered, and
de-registers it when it leaves. This places th-e C exception handler for the current
library environment at the head of the exception handling list. Again, this is handled
for you by #pragma handler.

Ap pen d i x on Dynami c Link ing DLL- 20 CRT Ini t Case 3

1-

- .

,-

DLL Initialization and Termination

#pragma linkage (_DLL_lnitTerm, system)

unsigned long DLL_lnitTerm(unsigned long modhandle, unsigned long flag)
{
switch(flag / * 0 initialize, 1 = terminate * I

{
case 0: /* DLL is being initialized *I

if (CRT init() = = -1) return O;
printf ("prlntf now works in DLL_lnitTerm(O) \n")
break;

case 1: / * DLL is being detached * I
break;

}
return 1; / * non-zero value returned to continue load * I
}

unsigned long DLL InitTerm (
unsigned Tong modhandle,
unsigned long flag)

< - 0 = abort process
- > module handle
- > O=load, l=free

You write and include this optional DLL initialization
and termination procedure. It will be called by 08 / 2
so you may execute your own initialization / termination
functions.

This routine is NOT optional for statically linked DLLs.

DLL lnitTerm is an entry point name which will be called by OS/2 2.0 based on the
lnitiaflzation and termination options selected in the LIBRARY statement of the module
definition file. DLL_lnitTerm is not specific to IBM C Set/2.

CRT init() is a function in the IBM C Set/2 Applications Runtime Libraries which
Initializes the library for thread one. The subsystems library does not require
initialization.

In the example above, taken from the lab, if the DLL itself dynamically links to the
DLL version of the IBM C Set/2 applications library, and if the DLL wishes to use the
library within the initialization case of DLL lnitTerm, then the user must call
CRT lnit. -

As we will see, the call to CRT lnit is optional when your DLL dynamically links to
the applications library, butlt is mandatory when your DLL statically links to the
applications library. The fact a call to CRT lnit is mandatory does not mean that you
have to put one into your DLL when you statically link to the C runtime: the default

,...., DLL lnitTerm does that for you. However, if you put in your own DLL lnitTerm, then
you must have a call to _CRT _lnit when you statically link to the C runtime.

Appendix on Dynamic Linking DLL- 2 1 DLL InitTerrn

Shipping the DLL Application Library in your DLL

[5]

[6]

APP. EXE
STARTUP CODE

-CRT_Init
rnain

I
rnain

THE APPLICATION

YOURSUBS.DLL
DLL In it Terrn - -

- CRT_Init

Other DLL Entry Points

DDE4MBS.LIB
- CRT_Init

IBM c SET/2
APPLICATIONS
LIBRARY

I

When your application
dynarnically links to
your DLL, then your
DLL rnay statically link
to the IBM C Set/2
Applications Library
and EXPORT the library.

This is the preferred
rnethod if you elect
dynarnic linking in
your product.

Here your DLL has
statically linked to
the Multithreaded
Applications Library
and exported its
functions. This provides
you with a UNIQUE DLL
which all of your
applications rnay use.

DDE4MBS.DEF is the
rnodule definition file
used to prepare the
library. You can use
this to rnake your own
.DEF file and your
own Irnport Library.

<Multi-Threaded Application Library> Gm

DDE4MBS LIB
+ DDE4MBM

DDE4MBSI LIB
DDE4MBS DLL
DDE4MBS DEF
DDE4MBSO LIB
+ DDE4MBMI

DDE4MBM
DDE4MBM

Gd- Gm Static Multithread
LIB Gd- Gm Sm Migration Library

Gd Gm Dynamic Multithread

LIB Gd Gm Sm
DLL
DEF

Dynamic Multithread
Migration Library

If you want to use dynamic linking in your product, it is recommended that you make
your own DLL which statically links in the IBM C Set/2 Applications library. Then you
link only to your DLL. This means that your application is not dependent on the
existance of the IBM DLLs in your customer's environment, and also that your
application can use Dynamic Linking.

Note that in this case, when you make your .EXE, you will use the import library which
describes EXPORTS from your DLL. These exports include the C Runtime Library
Functions.

The .DEF file in the library may be used to create your EXPORTS statement for your DLL
which exports the C Runtime, and the ... O.LIB must be linked into your .EXE or added
to your import library, as it is the C Startup Code.

Appendix on Dy nami c Linking DLL-22 CRT Init Case 4

[l]

[2]

IBM C Set/2 Run Time Libraries

DDE4NBS LIB

DDE4NBSI LIB
DDE4NBS DLL
DDE4NBS DEF
DDE4NBSO LIB

<subsys tem library> Rn

Gd- Rn Static Subsystem Library

Gd Rn Dynamic Subsystem Library

<Single Threaded Application Library> Gm-

[3] DDE4SBS LIB Gd- Gm- Static Singlethread

[4]

[5]

[6]

+ DDE4SBM LIB Gd- Gm- Sm Migration Library

DDE4SBSI LIB Gd
DDE4SBS DLL
DDE4SBS DEF
DDE4SBSO LIB

Gm- Dynami c Singlethread

+ DDE4SBMI LIB
DDE4SBM DLL
DDE4SBM DEF

Gd Gm- Sm Dynamic Singlethread
Migration Library

<Multi-Threaded Application Library> Gm

DDE4MBS LIB
+ DDE4MBM

DDE4MBSI LIB
DDE4MBS DLL
DDE4MBS DEF
DDE4MBSO LIB
+ DDE4MBMI

DDE4MBM
DDE4MBM

Gd- Gm Static Multithread
LIB Gd- Gm Sm Migration Library

Gd Gm Dynamic Multithread

LIB Gd Gm Sm
DLL
DEF

Dynamic Multithread
Migration Library

The .DEF file in the library may be used to create your EXPORTS statement for your DLL
which exports the C Runtime, and the ... O.LIB must be linked into your .EXE or added
to your import library, as it is the C Startup Code.

Appendix on Dynami c Linking DLL -23 C Set /2 Library Components

CRT _init() and Statically Linked DLL

#pragma linkage (_DLL_lnitTerm, system)

unsigned long DLL_lnitTerm(unsigned long modhandle, unsigned long flag)
{
switch(flag /* 0 = initialize, 1 = terminate *I

{
case 0 : /* DLL is being initialized *I

if (CRT init() = = -1) return O;
printf ("prlntf now works in DLL_lnitTerm(O) \n")
break ;

case 1 : I * DLL is being detached *I
break;

return 1; I * non-zero value returned to continue load *I
}

int _CRT_init (void) - > -1 = failu re

This r outine initializes the C Runtime . It is not
r e qui red for t he subsy stem lib rary (whi c h has no
initialization) .

This routine must be use d (1) if your DLL dynami cally
links t o the appli cations library AND you make library
calls during your initialization; o r (2) when your DLL
static ally links t o t he IBM C Se t /2 appli c ati ons library.

A statically linked DLL must initialize the C Runtime by calling CRT init. While those
library modules which are DLLs can initialize themselves via initialization entry points,
and library routines which are statically attached to the .EXE file can be initialized by
the C startup code associated with the main() procedure, library routines statically
bound to a DLL must be initialized by you.

Appendix on Dynami c Li nki ng DLL- 24 CRT_init (

LIBRARY MYDLL INITGLOBAL TERMGLOBAL

Syntax: LIBRARY [libraryname] [initialization] [termination]

This statement identifies the executable file as a dynamic-link library and optionally
defines the name and library module initialization required.

If < libraryname > is given, it becomes the name of the library as it is known by OS/2 .
This name can be any valid file name. If < libraryname > is not given, the name of the
executable file - with the extension removed - becomes the name of the library.

If <initialization> is given, it defines the library initialization required and can
be one of the va lues below . If omitted, <in itialization> defaults to INITGLOBAL.

INITGLOBAL

The library initialization routine is called only when the library module is
initially loaded into memory. Using this keyword without a termination flag
implies TERMGLOBAL for DLLs with 32-bit entry points.

INITINSTANCE

The library initialization routine is called each time a new process gains
access to the library. Using this keyword without a termination flag implies
TERMINSTANCE for DLLs with 32-bit entry points.

If <termination> is given , it defines the library termination required and can be one
of the values below. If omitted, <initialization> defaults to TERMGLOBAL. The
termination flag can only apply to DLLs with 32-bit entry points.

TERMGLOBAL

The library termination routine is called only when the library module is
unloaded from memory. Using this keyword without an initialization flag
implies INITGLOBAL.

TERM INSTANCE

The library termination routine is called each time a process relinquishes
access to the library. Using this keyword without an initialization flag
implies INITINSTANCE.

Appendi x on Dynamic Linki ng DLL- 25 LIBRARY statement in . DEF fi le

DLL with DATA SINGLE SHARED

PROCESS #1 PROCESS #2

DLL
CODE

DLLCODE DLLCODE
DLL

DATA

DLLDATA DLLDATA

The diagram above represents linear addresses.

How is the physical address map different than the linear address map for the DLL and
its data segments?

How can we make sure that the DLL and its data is not discarded, so that the DLL can
manage a hardware or software resource?

How can we protect the shared DLL data from accidental destruction by any one of the
applications which attaches the DLL?

Using a DLL to manage a hardware or software resource is an alternative strategy to
using a process to manage the resource. The benefit of a DLL is that whenever an
attaching process is running, the DLL (and its shared data) is in the context of that
process: local calls (no IPC) may be used to communicate between the DLL and the
application. The DLL effectively "carries" its data to whichever application is
attaching it and running.

A subsystem can be comprised of a DLL, a detached process, a Device Driver, and a
piece of hardware. The DLL provides the top level subsystem interface.

Appendix on Dynamic Linking DLL- 26 DLL with Shared Data

,--..

,..__

,....-,

,..-.,

,---,

,-.

Using a DLL to Manage a Resource

Ill EVENTLOG.EXE 32-Bit - Lab Project 4 aiiJ
Data Graphics Lab Signals

rnD=Ol PID=00083 Pri=0200 Event=002 Time=00000031 ms

APP LI CAT ION

DLL DATA

HSEM h •e m;
SZ s %M•••.a g e Buff • r- [40] ;
PIO pidArr- a y [2 56) i

DLL CODE

APPLICATION L___ -:::~r::~·m j ~dll•••vic o

WinPostQueueMsg

I
Thread Control Panel

Data

PID=0083 TID=02 Reporting In
Message Data

DLL Interface Connect
PID=0079 TID=Ol Reporting In
PID=0079 TID=02 Reporting In
PID=0079 TID=Ol Thread Reporting Out
PID=0079 TID=02 Thread Reporting Out
PID=0079 TID=Ol Exiting
PID=0083 TID=Ol Reporting In
PID=0083 TID=02 Reporting In

..

Unlike EVENTLOG which was a program which, due to its use of shared memory, only
communicated with one application, the DLL here can be attached by any number of
applications. When attached and called at entry point dllservice, the DLL recognizes
that it is being called by the "thread controller" which IS the unique resource. The
DLL passes back a message.

Any application which attaches the DLL calls the entry point dllservice. If this is
the first time that particular PIO has called the entry, routine isnew returns TRUE
and adds the PIO to its array of attached PIDs. A message is put into the message
buffer and IPC using WinPostOueueMessage is used to notify the thread controller (PM
application) that a new process has attached. Using an older technique, DosExitlist
rather than DLL lnitTerm was used to detect the termination of the process. Thus if
isnew returns TR-UE, the EXITLIST is registered.

DISCUSSION:

If a semaphore is created on the dllservice entry, what must be done so that
semaphore may be used when applications call the dllservice entry?

Appendix on Dynami c Linking DLL- 27 DLL with Shared Data

Answers to Questions

<page DLL-13>

1] When an application executes DosAllocSharedMem linear address space is used
in which processes? When will that linear address space be freed?

a] Linear address space is reserved in all processes which are currently
running, and all future processes which wil l be loaded. The linear address
space is freed when the usage count (or "reference" count) on the shared
object goes to zero.

2] When an application attaches a DLL, linear address space is used in which
processes? When will that linear address space be freed?

a] The answer is the same as the answer to question #1.

3] Under what circumstances will code be shared between two processes which use
static linking? What do you have to do to get this to happen?

a] If one process is loaded multiple times, then the code is shared between
them. You don't have to do anything: OS/2 does this for you.

4] Under OS/2 1.3, how could you share statically bound data segments between
processes? Why would you want to do this? What is an easier (and perhaps
safer) way to share data?

a] To share statically declared data such as arrays, you could specify in the
module definition file that that particular array should be shared. This is
a kind of "common" between processes. An easier way, of course , is to
dynamically allocate shared memory at run time. It is safer in that some of
these module definition file options may not work ...

5] How can you get .EXE files with different names and some common code to
share the code?

a] Put the code in a DLL.

6] What is the primary benefit of writing "library " or common procedures as DLL
modules?

a] Space is saved in RAM when different . EXE f iles want to share the same
code. Space is also saved on disk.

Appendix on Dynami c Linking DLL- 28 Answers t o Questio n s

,-

r-

7] Name three ways that an object file contain ing "library" or common procedures
can be attached to a process.

a] You can statically link it. You may put the code in a DLL and attach the DLL
by reference (import the DLL), or you may put the code in a DLL and load it
at run time using DosloadModule. The two DLL techniques are called load
time linking (binding) and run time linking (b inding).

8] What are the benefits of run time binding?

a] You may have many DLLs and only attach those you need. You may use
DosFreeModule to tell OS/2 that you no longer need the DLL. If your DLL is
not ava ilable, your program will still load and you can deal with the error
yourself. The DLL need not be in the LIBPATH. See the "Application Design
Guide".

d] By using child processes and by using run time binding, you may explicitly
tell OS/2 when you are done with a code resource. This simplifies t he job of
the memory manager, in that it does not have to "guess" based on LAU (least
recently used) algorithms when a piece of code is a good candidate to discard
in a memory overcommit situation.

Appendix on Dynami c Linking DLL-29 Ans wers t o Qu e st ion s

30 Notes

--

,-

.-

Appendix on Dynamic Linking DLL-30 Notes

OS/2 2.1 for Software Developers

Appendix E

Exceptions and Handlers

Some material in this chapter
courtesy IBM Toronto Lab

OS / 2 2.1 for Developers E-1

by Charles Chernack

Exceptions and Handlers

2 Table of Contents

Chapter E - The 08 / 2 2.1 Desktop

Exception Registration Records and Handlers
The Handler .
Using setjmp and longjmp

function chkptr (sample)
setjmp function .
longjmp function

The C Exception Handler
#pragma handler .
Writing an Exception Handler
Using #pragma map to register your handler

E-1

E-3
E-4
E-5
E-6
E-7
E-8
E-9
E-10
E-11
E-14

Appendix E - Exceptions E-2 Table of Contents 09 / 13 /9 4

,,.........

,,....-.

Exception handlers are registered by placing exception registration records in the
thread stack. The tib s structure contains a ULONG pointer to the most recent
exception registration record, which is at the lowest address is the stack.

THE CHAIN OF HANDLERS: An exception registration record is made up of two
ULONGS, a forward pointer to the next registration record and a pointer to the
handler. If an exception occurs in the context of this thread, the first handler
in the chain is called. If that handler returns XCPT CONTINUE SEARCH,
then the next handler is called, and so on.

tib_s

t.ib_p .. u:h1 i n

Handler Function

,/"
HANDLED NOT HANDLED

Exception Registration Records
(in stack)

11next

11fcn(J

Clower address
- more recentl

DosExit

11next

11fcn[J

DosUnwindExc eption
longjmp[J

KCP T_CONTINUE_E KECUTION
(not. if non- c111H.i nu1b hl

XCPT_CONTINUE_SEARCH (not if XCP T_PR DCESS _TE R"INATE
or XCP T_ASYNC _P ROCESS _TERIHNATE)

I (not logic.I for nync1h.::~ot.ui~nl I
I

Appendix E - Exceptions E-3 Exception Registration Records

The Handler

.L

Handler Function

~
OosUnwindExcep ti on

\ longjmp[J

KCPT _C ONTlNU E_E>C ECUT ION
(not if non -co nt.inu.bh) I l~(no-t -log -ic•-1 ,,- , ,-., .-c•h•-rco•np-otuto~n) I

I
NOT HANDLED OosE xit
KCPT _CD NTINUE_S EAR CH (not if KCPT_PROCE SS_TER ll I NAT E

o r KC PT _AS VN C_PRDCE SS_TE Rll I NATE)

I

XCPT CONTINUE EXECUTION: If the handler "fixes" the problem, then it returns

XCPT CONTINUE EXECUTION. For example, if a handler in thread one decides to ignore
XCPT-SIGNAL Kl[LPROC (see page 13-6 of the OS/2 2.0 Programming Guide), it can
return-XCPT C-ONTINUE EXECUTION.

- -

XCPT CONTINUE SEARCH: If the handler does not deal with this kind of exception,
then ff can pass the buck to the next handler in the chain by returning
XCPT CONTINUE SEARCH. For example, if you write a handler to handle page faults,
and the exception-is not a page fault, you would return XCPT _CONTINUE SEARCH.

DosExit (EXIT THREAD or EXIT PROCESS ...): The exception handler, or a signal handler
called by the exception handler,-may decide to terminate the thread or process based
on the exception . In that case, there is no return from the handler.

Note that the handler must not do a DosExit if the exception is a
... PROCESS TERMINATE exception. Whenever a process terminates itself, or a
process is terminated by an external request, the exception handler for each
thread is called with a XCPT PROCESS TERMINATE (terminating itself) or
XCPT ASYNC PROCCESS Ti:RMINATE-(external termination) exception. If the handler
were to do a DosExit in this case, there would be a loop!

longjmp() or DosUnwindException: The handler may longjmp back to the point prior to
the problem. We have an example of that following . In that case, there is no return
from the handler and the process continues. This is typically used for segment
violation. This is not logically useful for an asynchronous (externally caused)
exception. DosUnwindException is not useful for C programmers. It is kind of a
self-generated longjmp without a corresponding setjmp, and can best be done at the
assembly level by programmers who work at that level.

Appendix E - Exceptio n s E -4 The Excepti on Handler

Using setjmp and longjmp

extern int chkptr (void * ptr,
int size);

#include < stdlib.h >
#include < stdio.h >

int main(void) {

I* pointer to storage to check *I
I* number of bytes to check *I

}

char * x = malloc (60000);
printf ("Trying chkptr()\n");
printf ("Chkptr reports %d available bytes\n", chkptr(x, 120000));
return O;

This example is the main program for the setjmp/longjmp signal handling example
following, and the setjmp/longjmp exception handling example following. Here we
malloc 60000 bytes and then call procedure chkptr which will try to access 1 20000
bytes of the array. Procedure chkptr returns the size of the array by accessing
consecutive elements until it gets a memory protect violation.

Two ways of surviving the memory protect violation without terminating the offending
thread are demonstrated: setjmp/longjmp using a signal handler and setjmp/longjmp
using an exception handler.

Appe ndix E - Exc eptions E-5 Using setjmp and longjmp

Using setjmp and longjmp

#include < signal.h >
#include < setjmp.h >
#include < stdio.h >

static void myhandler (int sig);
static jm p _bu f jbu f;

int chkptr(void * ptr,
int size)

{

}

void (* oldsig) (int);
volatile char c;
int valid = O;
char * p = ptr;

oldsig = signal(SIGSEGV, myhandler);

if (!setjmp(jbuf)) {

while (size--)
{

c=*p++;
valid++;

} }

signal(SIGSEGV,oldsig);
return valid;

static void myhandler (int si~) {
printf(" Invalid address\n) ;
longjmp(jbuf, 1) ;

}

11 for the signal function
11 for the setjmp and longjmp functions
I I for the printf call

11 the signal handler prototype
11 save area for longjmp

11 pointer to storage to check
11 number of bytes to check

I I where to save the old signal handler
11 volatile to insure access occurs
11 count of valid bytes
11 to satisfy the type checking for p + +

11 set the signal handler

I I provide a point for the signal handler
11 to return to

I I scan the storage

I I check the storage
11 then bump the counter

I I reset the signal handler
11 return number of valid bytes

11 restart the function at the setjmp() call
11 without restarting the while() loop

Procedure chkptr registers a signal handler for SIGSEGV. It saves the previous
content of the threads signal handling table for SIGSEGV, and upon return resets
the threads signal handling table.

jbuf is a static storage area which contains information saved by setjmp and used
by longjmp. Because we have but one jbuf, this version of chkptr is NOT reentrant.

The first call to setjmp saves the machine state at this point in the program, and
returns FALSE so that the while loop is entered. To prevent the compiler from
optimizing out the code c = *p + +, c is declared volatile. That tells the compiler
NOT to carry "c" in a register and to execute the memory reference.

When the memory protection violation occurs, our signal handler is called. It
prints a message and does a longjmp back to the most recent setjmp. Since a 1 is
passed, setjmp returns TRUE and the while loop is skipped. Procedure chkptr resets
the state of the SIGSEGV signal and returns the size of the array.

Appendix E - Exceptions E- 6 Using setjmp and longjmp

int setjmp (jmp _ buf env)

tib_s

t ib_pexecha in ~~-~
--~~"'-

j 1ower
I addresses

~

setjmp saves

EIP
EBP
save register set

v~
~ setjnp here

longjnp retur-ns
you to this point

current exception registration record
floating point control word

Always use jmp _ buf to define the setjmp buffer.

STACK

FAILURE
HERE!!!

Exception
Registration
Record

Exception
Registration
Record

The setjmp function saves a stack environment that can subsequently be restored by
longjmp. The setjmp and longjmp functions provide a way to perform a nonlocal goto.

A call to setjmp causes it to save the current stack environment. A subsequent call
to longjmp restores the saved environment and returns control to a point
corresponding to the setjmp call. The values of all variables (except register
variables) accessible to the function receiving control contain the values they had
when longjmp was called. The values of register variables are unpredictable.
Nonvolatile auto variables that are changed between calls to setjmp and longjmp are
also unpredictable.

The setjmp function returns the value 0 after saving the stack environment. If
-._ setjmp returns as a result of a longjmp call, it returns the value argument of

longjmp, or 1 if the value argument of longjmp is 0. There is no error-return value.

Appe ndix E - Except ions E- 7 Using setjmp and l ongjmp

void longjmp (jmp _ buf env, int value)

setjmp

save exception
handler in tib

save registers

return 0

if (!setjmp(jbuf)) {
while (size--)
{

}
}

c = *p++:
valid++;

longjmp

unwind exception

restore registers

branch

static void myhandler (int sig) {
printf("lnvalid address\n");
longjmp(jbuf, 1);

The longjmp function restores a stack environment previously saved by setjmp. The
setjmp and longjmp functions provide a way to perform a nonlocal goto.

The value argument passed to longjmp must be nonzero. If you give a zero argument
for value, longjmp substitutes a 1 in its place.

The longjmp function does not use the normal function call and return mechanisms;
it has no return value.

Appendix E - Exceptions E-8 Using setjmp and longjmp

The C Exception Handler

No

No return
>----oi Not Handled

Yes Fix, seterrno
>-----ft call matherr

Yes

DosExit
(with dump)

return Handled

No

No

Yes

*

Yes

Fix
return Handled

Call User Signal
Handler

asynchronous
exception or FP
precision or Fixed
Overflow

longjmp or
DosExit

The matherr function allows users to process errors generated by the functions in the
math library. The math functions call matherr whenever they detect an error. The

---.._ matherr function supplied with the C Set/2 library performs no error handling and
returns 0 to the calling function. You can provide a different definition of the
matherr function to carry out special error handling.

The Exception handler is different in IBM C Set + +. The diagram above is for the IBM
C Set/2 compiler runtime. for IBM C Set+ + the DosExit is not done (lower left box).
This causes return back to the operating system which then takes the default action.
The change was made because the DosExit (with dump) made Presentation Manager
applications "evaporate" on a fatal fault. By returning to the operating system, the
hard error screen comes up (unless suppressed via a DosError call or AUTOFAIL in
CONFIG.SYS).

Appendix E - Exceptions E-9 The C _Exception Handler

#pragma handler - register _Exception for function

>>~#pragma~handler~ (~functi on~) ~~><

X() ~DosSetExceptionHandler (---)

-------------------·
~DosUnsetExceptionHandler(

The #pragma handler directive generates the code at compile time to install the C
Set/2 exception handler, Exception, before starting execution of the function. Code
to remove the exception handler at function exit is also generated.

You may use this directive whenever you change library environments or enter a
user-created DLL. The function is the name of the function for which the exception
handler is to be registered. This function should be declared before you use it in
this directive.

If you are using the subsystem libraries, the Exception function is not provided.
To use the #pragma handler directive in a subsystem, you must provide your own
exception handler named Exception.

Append ix E - Exceptions E-10 #pragma handl er

Writing an Exception Handler (1 of 3)

#define INCL DOS
#define INCL -NOPMAPI
#include < os2--:h >
#include < stdlib.h >
#include < setjmp.h >
#include < stdio.h >

void * tss _array[100];

static TID getTid(void);

/*noPMapi*/
I* for the doscall *I
/* for the signal function *I
/* for the setjmp and longjmp functions *I
/* for the printf call *I

/* array for 100 thread specific pointers *I

/* returns our TID *I

APIRET APIENTRY MyExceptionHandler(EXCEPTIONREPORTRECORD *,
EXCEPTIONREGISTRA TIONRECORD *,
CONTEXTRECORD *,
PVOID);

#pragma map(Exception, "MyExceptionHandler")
#pragma handler(chkptr)

int chkptr(void * ptr,
int size)

{
volatile char c;
int valid = O;
char * p = ptr;
jmp _buf jbuf;

/* pointer to storage to check *I
/* number of bytes to check *I

/* volatile to insure access occurs *I
/* count of valid bytes *I
/* to satisfy the type checking for p + + *I
/* the jump buffer moves to automatic storage *I
/* so that it is unique to this thread *I

/* create a thread specific jmp buf *I
tss_array[getTid()] = (void *))buf;

}

if (!setjmp(jbuf)) {

}

while (size--)
{

}

c = *p++;
valid++;

return valid;

Appendix E - Exceptions

/* provide a point for the signal handler *I
/* to return to *I

/* scan the storage *I

/* check the storage *I
/* then bump the counter *I

/* return number of valid bytes *I

E-11 Writing an Exception Handler 1 / 3

Writing an Exception Handler (2 of 3)

APIRET APIENTRY MyExceptionHandler(EXCEPTIONREPORTRECORD * report rec,
EXCEPTIONREGISTRA TIONRECORD * register re(,

{

}

CONTEXTRECORD * context rec, -
PVOID dummy) -

/* check the exception flags *I
if (EH EXIT UNWIND & report rec-> fHandlerFlags)

return XCT>T_CONTINUE_SEARCH;

if (EH UNWINDING & report rec-> fHandlerFlags)
return XCPT _CONTINUE_ SEARCH;

if (EH NESTED CALL & report rec-> fHandlerFlags)
return XCPT _C:ONTINUE _SEARCH;

/* determine what the exception is *I

/* exiting *I

/* unwinding *I

/* nested exceptions *I

if (report_rec- > ExceptionNum = = XCPT _ACCESS_ VIOLATION) {
/* this is the only one we expect *I

printf(11 Detected invalid storage address\n 11
);

longjmp((int *)tss array[getTid()], 1); /* restart the function at setjmp() call *I
- /* without restarting the while() loop *I

} /* endif */

return XCPT_CONTINUE_SEARCH; /* we don't handle this exception *I

static TID getTid(void)
{

/* return TID of current thread *I

TIB *ptib;
PIB *ppib;

DosGetlnfoBlocks(&ptib, &ppib);
return (ptib->tib ptib2->tib2 ultid);
} - -

/* pointer to a thread information block *I
/* pointer to a process information block *I

Appendix E - Exceptions E-12 Writing an Exception Handler 2/3

Writing an Exception Handler (3 of 3)

The version of chkptr shown on the previous pages is reentrant because it declares
jbuf as an automatic variable. In order for the exception handler to do the longjmp
through the thread specific jbuf, an array of 100 pointers (supporting 100 threads)
is used: the exception handler cannot reference the actual jbuf because of scoping.

Since we are writing our own exception handler, we must provide the function
prototype. The EXCEPTIONREPORTRECORD is what we use. The
EXCEPTIONREGISTRATIONRECORD is a pointer to our exception registration record (no
need to use this), and the CONTEXTRECORD contains the CPU context. Do not modify
the CONTEXTRECORD. Assembler programmers may find the contents interesting ...

The pragma map combined with the pragma handler represent a (possibly undocumented)
method to get the C Set/2 Compiler to register and de-register your handler for you
when you enter and leave function chkptr. This concept of putting your own
special-purpose limited-function handler in at the front of the list of the duration
of one procedure only is typical.

Inside the exception handler, the prudent policy is to leave with
XCPT CONTINUE SEARCH if you do not have anything specific to do regarding this
exception, or if you do not recognize it or wish to process it.

We check the EH flags which are set to indicate exception attributes first, as they
might be set along with XCPT ACCESS VIOLATION. These EH flags are described in
the On Line Programming Guide and Reference.

If we pass the EH "filter" we check for the specif ic exception we wish to process.
If we find it, we do a longjmp which means that we never return from the exception.
OS/2 2.0 had "interrupted" our thread to send us the exception, and we simply
continue in our thread.

If we do not find the specific exception we want, we return XCPT CONTINUE SEARCH .

Appe ndix E - Exceptions E-1 3 Writing an Ex ception Handler 3/3

>>-#--pragma--map-- (-identifier-,-"name"-)- ><

The #pragma map directive associates an external name (name) with a C name
(identifier).

When you use this directive, the identifier that appears in the source file is not
visible in the object file. The external name will be used to represent the object
in the object file.

The map name is an external name and must not be used in the source file to reference
the object. If you try to use the map name in the source file, to access the
corresponding C object, the compiler will treat the map name as a new identifier.

#pragma map(Exception, "MyExceptionHandler")
#pragma handier(chkptr)

In this example, #pragma handler causes the IBM C Set/2 Compiler to register and
deregister the C exception handler Exception when function chkptr is entered and
exited. The use of #pragma map gets the compiler to emit code to register
MyExceptionHandler instead.

Appendix E - Exceptions E-14 #pragma map

OS/2 2. 1 for Software Developers

Appendix EDIT

Text Editors E.EXE and EPM.EXE

OS/2 2.1 for Developers

[_s_er~y_ic_e_s~Q_p_t_io_n_s~~~el_p~~~~~~~~~~~~~~~~~I'
l.!'!!::::::1::'t ,,lilif1®,,>rffi¥',,"- "*]!'''Ire ..

l
[B Basic Procedures
rB File Manipulation
ll±l !~®if*""'®®3Gtt

l

[B Text Layout and Style
Controli ng OS/ 2 with EPM

rB Cursor Movement and Editor Features

l

[B The Action Bar Pull - Down Menus
rB The Function Keys

Key Definitions Summary
rB EPM Commands
I Changing Common Default Values Via the Settings Dialog

l
[B Host Editing

!

11
I

Including New Features into the Default Configuration
1rB Changing the Default Configuration
I Changing the Default Window Layout

I

l
[B Recompiling Your Editor

Return Codes
I

VIEW EPMUSERS

pack ! Forward 1
--....:::........

by Charles R. Chernack

EDIT-1 Text Editors E.EXE and EPM.EXE

2 Table of Contents

Appendix EDIT - Using E.EXE and EPM.EXE .

NOTES:

Using the PC DOS 6.3 E.EXE Full Screen Editor

Introduction
Using the Editor
The Editor Help File

Using the EPM 6.0 Presentation Manager Editor

Introduction
Setting Preferences

Fonts .
Enter Key(s)
Colors

Using the Command [Line] Dialog
Go to a Line Number

Options - List Ring .
File Menu - Accelerators, Open vs Add File
Search
Edit - Line and Block Marking, Copying, etc

The Editor Help File
Accelerator Key Definitions
Command Line Commands .

Significant material courtesy of IBM Corporation, E Editor and EPM Editor Help files.

EDIT-1

EDIT-3

EDIT-3
EDIT-4
EDIT-5

EDIT-11

EDIT-12
EDIT-12
EDIT-13
EDIT-13
EDIT-13
EDIT-13
EDIT-14
EDIT-14
EDIT-15
EDIT-15
EDIT-16

EDIT-17
EDIT-17
EDIT-18

Editors E.EXE and EPM.EXE EDIT-2 Table of Contents 09/13/94

...--.

,--..

The PC DOS 6.3 E.EXE Editor

The E.EXE DOS editor is similar to the IBM Internal Use EOS2 or E3 OS/2 editor. The
DOS editor is not an internal use only editor, and is similar to the IBM PE2 and IBM
T.EXE and T2.EXE editors. Many programmers prefer this type of editor in that it is
very fast and similar to the mentioned editors. If you would prefer a more elaborate
editor, skip forward to the section on EPM.

Your class hard disk has been set up with E.EXE and the associated files from PC DOS
6.3 in the OS20LABS subdirectory. AUTOEXEC.BAT has been modified to put
OS20LABS into the path , so that the F1 help will find EHELP.HLP. CONFIG.SYS has been
modified to put OS20LABS at the start of the path. To start the editor type E from
an OS/2 (seamless) or DOS window.

=Top of file=

~~ Bottom of file =

. Unnamed file Line 1 Col
E Editor Version 3 .12 Copyright IBM 1988, 1993

1 Insert E 3 .1 2

Files in C: \ OS20LABS

E EX
E EXE
EHELP HLP

47566 12-31-93
58343 12-31-93
22986 12-31-93

These files are from IBM PC DOS
6 .3 .

Inc lude C: \ OS20LABS in the PATH
in your OS2 AUTOEXEC.BAT

<- COMMAND LINE

When the editor first comes up, you see the copyright on the bottom of the screen.
Be sure to maximize the window or run full screen. You can also create EMAX.CMD or
EFS.CMD (below) to bring up the editor in a maximized window or in a full screen.
The /C gets rid of the dos session when you exit the editor.

EMAX.CMD
START /DOS /WIN /MAX /C "E Editor" E %1 %2 %3

EFS.CMD
START /DOS IC "E Full Screen Editor " E % 1 %2 %3

Once you hit any key while in the editor, the copyright message is replaced by a list
of function key prompts. The ESC key moves the cursor between the text area and the
command line.

= Top of file =
<- TEXT AREA = Bottom of file =

<- COMMAND LINE

.Unnamed file Line 1 Col 1 Insert E 3 .12
F1=Help 2=Save 3=Quit 4=File 6=Draw ?=Name 8=Edit 9=Undo 10=Next

Editors E. EXE a n d EPM . EXE EDIT- 3 The PC DOS 6.3 E.EXE Editor

Using the E Editor

INVOKING THE EDITOR - EDITING MULTIPLE FILES

You can invoke the editor using E, EFS or EMAX. You may use wild cards in the
invocation:

E M*.C M*.ERR <- edit main.c and main.err in our labs

You may go around the ring of files using F10. You can also bring in additional files
once the editor is started by going to the command line and typing E <filename> .
When you have quit or saved all of the files, the editor terminates.

MOVING OR COPYING TEXT LINES

You can mark a line of text using ALT+ L. To mark many lines, move the cursor and
enter ALT+ L again. Once line(s) are marked, you can copy the line(s) using ALT+ C or
move them using ALT+ M. ALT+ U unmarks the lines. ALT+ Y moves the cursor to the
marked area. All of these rules remain the same if you are working with multiple
files in the ring.

DELETING, SPLITTING, COMBINING LINES

CTRL +Backspace will delete the line the cursor is on. ALT+ D will delete the marked
lines. ALT+ S will split a line at the cursor. ALT+ J will join lines. CTRL + E is a
delete right -- deleting all of the character from the cursor to the end of the line.

SHIFTING TEXT TO THE LEFT, TO THE RIGHT

If lines are marked, ALT+ 7 will shift the text to the left. ALT+ 8 will shift the text
to the right.

INCLUDING ONE FILE WITHIN ANOTHER

On the command line, use GET filename. The file specified will be copied into the
file you are currently editing.

BLOCK MARKING

The editor has convenient block marking commands. They allow you to establish a
marked rectangle on the screen, and then copy, move, fill, clear, or shift the marked
area. The commands are ALT+ B to mark each corner, ALT+ F to fill (followed by the
fill character), ALT+ D to delete the block, ALT+ U to unmark the block. ALT+ 0 will
overlay the block at the current cursor position.

COMMAND LINE RECALL

When on the command line, the up and down arrow will bring back previous commands.

Editors E.EXE and EPM.EXE EDIT-4 The PC DOS 6.3 E.EXE Editor

r- Using the E Editor (continued)

SEARCHING FOR TEXT, CHANGING TEST

c/old/new/ * m will change all occurrences of "old" to "new" in the marked area. If you
leave off the "m", then all occurrences will change. The changes are from the current
cursor position forward.

f/findtext/- will search for "findtext" backwards. If you leave out the " -" it will search
forward. CTRL + F will search again.

CHANGING THE NAME OF A FILE

Using the DOS command on the command line, you can shell out to a command prompt.
You may use the NAME command (or N) to give the file you are currently editing a new
filename.

GOING TO A LINE NUMBER - DEALING WITH COMPILER ERROR MESSAGES

By default the IBM C Set Compiler routes it s errors to stdout. Our lab makefiles
redirect the errors to a file with the extension .ERR.

When you get an error with the compiler, you can go to that specific line number by
going to the command line and typing the line number and hitting enter. Since we
generally route our error messages to a .ERR file in the lab makefiles, I have provided
files X.CMD, Y.CMD and M.CMD for use with the E editor (you may modify them
for EPM). Y.CMD says E L * .C L * .ERR which would bring up the .C and .ERR file in the
ring of E. EXE. Note that the IBM C Set compiler provides error messages which specify
the line number and column number.

SYNTAX EXPANSION - EXPAND ON

If the file you are editing has the extension .c (such as lab 1 .c), and you type EXPAND
ON on the command line, then statements such as FOR and IF will be expanded
automatically. That is, if you type for you will see:

for (; ;) {
} /* endfor *I

SORT

The SORT command on the command line will sort the entire file, or if there are marked lines,
it will sort the marked area.

FINDING DOCUMENTATION

See the IBM PC DOS 6.1 or PC DOS 6.3 manual.

Edi tors E . EXE a n d EPM . EXE EDIT -5 Th e PC DOS 6.3 E.EXE Editor

File EHELP.HLP (1/5)

I E Editor Help II Directory of Help Panels I

Page 1 : Function Keys and (F l - FlO)
Alt+Keys (Alt+Fl - Alt+FlO)

Page 2: Shift+Keys and (Shift+Fl - Shift+FlO)
Ctrl+ Keys (Ctrl+Fl - Ctrl+FlO)

Page 3: Alt+ Summary (Alt - Alt+O)
Page 4: Alt+Summary and (Alt+P - Alt+=)

Ctrl+ Summary (Ctrl+Enter - Ctrl+Backspace)
Page 5 : Ctrl+ Summary (Ctrl - Ctrl+Z)
Page 6-9: Command Summary
Page 10: Edit Commands
Page 11: Termination Commands
Page 12: Cursor Movement Controls
Page 13: Copying, Moving, and Deleting text

I Page Down F3=Exit l

I
E Editor Help II Function Keys and Alt+ Keys (Fl - Fl O) Page 1

Alt +

ESC Moves cursor between the edit area
and the command line

Fl Display help text Box characters
F2 Save file and continue
F3 Quit without saving file
F4 Save file and quit
FS
F6 Show draw options
F7 Change filename Shift mark left
F8 Edit new file Shift mark right
F9 Undo current line
FlO Nex t file Previous file

I Page Down Page Up F3=Exitl

I E Editor Help II Shift+ and Ctrl+ Keys (Fl - FlO) Page 2 I

Shift + Ctrl +

Fl Scroll left Uppercase word
F2 Scroll right Lowercase word
F3 Scroll down Uppercase mark
F4 Scroll Up Lowercase mark
FS Center line vert ical Cursor to beginning of word
F6 Cursor to end of word
F7
F8
F9
FlO

I Page Down Page Up F3=Ex itl

Editors E.EXE and EPM.EXE EDIT- 6 The PC DOS 6 .3 E.EXE Editor

File EHELP.HLP (2/5)

I E Editor Help II Alt+ Keys (Alt - Alt+R) Page 3
I

Alt : change function line descriptions
Alt+A : ADJUST marked area, blank old
Alt+B : mark BLOCK
Alt+C : COPY mark
Alt+D : DELETE marked area
Alt+E : cursor to END of marked area
Alt+F : FILL marked area
Alt+J : JOIN (with following line)
Alt+L : mark LINE
Alt+M : MOVE marked area
Alt+N : key in file NAME at cursor
Alt+O : OVERLAY blocked area
Alt+P : reformat following PARAGRAPH
Alt+R : REFLOW marked area

I
Page Down Page Up F3=Exitl

I E Editor Help II Alt+ Keys (Alt+S - Alt+=) and Ctrl Keys Page 4

Alt+S : SPLIT line at cursor
Alt+T : CENTER text in marked block
Alt+U : UNMARK
Alt+W : mark WORD
Alt+X : ESCAPE (allow special characters)
Al t+Y : cursor to beginning of mark
Alt+Z : mark, character mode
Alt+l : Edit file named on current line
Alt+= : Execute the current line or marked set of lines as commands

---Ctrl Keys
Ctrl : change function line descriptions
Ctrl+Backspace : delete a line
Ctrl+Enter : like Enter except no new line

I Page Down Page Up F3=Exitl

I E Editor Help II Ctrl+ Keys (Ctrl+A - Ctrl+Z) Page 5 I
Ctrl+A : change window style
Ctrl+D : DELETE word
Ctrl+E : ERASE to end of line
Ctrl+F : repeat previous FIND command
Ctrl+H : split screen HORIZONTALLY
Ctrl+L : copy text LINE to command line
Ctrl+M : toggle tiled (non-overlapping)/MESSY (overlapping) window style
Ctrl+Q : Swap to / from .ALL file (see ALL command)
Ctrl+R : RECORD key sequence
Ctrl+T : play recorded key sequence
Ctrl+V : split screen VERTICALLY
Ctrl+W : move to next WINDOW
Ctrl+X : force syntax expansion
Ctrl+Z : ZOOM window to full screen

I Page Down Page Up F3=Exitl

Editors E.EXE and EPM.EXE EDIT-7 The PC DOS 6.3 E.EXE Editor

File EHELP.HLP (3/5)

I E Editor Help II Command Summary (1 of 4) Page 6 I
Command Syntax

[L] / pattern/ [cle] [m la] (- 1+] [r If] - locates string
c / old/ new/ [c e] [m a] [- +] [r fl - changes string

c = ignore case e = match case exactly
m = within marked area a = all file
- = backwards in file + = forward in file
r = search Right to Left f = search from Left to Right

NAME, N [filespec] - renames for next save
PRINT - prints current file
SAVE, s [filespec] - saves file
PUT file spec - saves marked area to file
APPEND [filespec] - appends marked area to file
GET file spec - gets and inserts file

I
Page Down Page Up F3=Exit l

I
E Editor Help II Command Summary (2 o f 4) Page 7 I

Command Syntax

BOX [1121 c Ip I A IE IR]
KEY #### [character] - repeats key horizontally
LOOPKEY ####JALL [character] - repeats key vertically
LIST, FINDFILE filespec - loads a list of files
MATCHTAB [ON I OFF]
EXPAND [ON OFF]
MArgins # # # - left, right margin, new-paragraph
TABS [nl n2 n3 . . . n20] - sets tab at column listed
AUTOSAVE [####] - autosaves file after #### lines
ws 1 121314 - sets window style
ALL / pattern[/ [el J - creates a new file called . ALL showing

all occurrences of the pattern given

I
Page Down Page Up F3=Exitl

I E Editor Help II Command Summary (3 of 4) Page 8 I
Command Syntax

DRAW [l] [2] [3] [4] [5] [6] [BJ [/ any character]
MATH expression

Operators -,+,*, / ,%
Numbers decimal, hex (leading x) , octal (leading o)
Example: math 10*30 / 5

MATHX - same as math, result shown in hex
MATHO - same as math, result shown in octal
ASC [char] - gives ASCII value of character (e.g.

ASC X=88) . If no argument specified,
uses current text character

CHR ### - shows character corresponding to ASCII #
ADD - adds marked column of numbers

I Page Down Page Up F3=Exitl

Editors E.EXE and EPM.EXE EDIT- 8 The PC DOS 6.3 E.EXE Editor

File EHELP.HLP (4/5)

I E Editor Help II Command Summary (4 of 4) Page 9 I
Command Syntax

SORT - sorts marked area or all SIZE - changes window size
DRAG - moves window
- goes to line ####
+ [#] - down # lines (or End of file) - (#] - up # lines (or Top of file)

AUTOS HELL [ON I OFF]
[DOS] [command] - any DOS command can be typed on the

command line if AUTOS HELL is on

I Page Down Page Up F3=Exitl

I E Editor Help II Edit Commands Page 10 I
How To Edit Additional Files during one EDIT session:

EDIT,ED,E [d:] [\ path \] filename.ext

Loads the file if it is not already loaded.

Typing the EDIT command without the file specification switches
you to the next loaded file in the ring (works the same as
pressing FlO.) After the last file, you are returned to the first
file in the ring of loaded files.

I Page Down Page Up F3=Exitl

I E Editor Help II Editor Termination Commands Page 111
How to get out of the E Editor

FILE, F command (F4) saves and then removes file from memory.

QUIT, Q command (F3) removes file from memory without saving.

If QUIT is entered after file has been altered, the message:

"Quit without saving? Press Y or N"

is displayed on the bottom line . Typing N cancels the QUIT, typing Y discards all changes since the last SAVE or FILE.

EXIT quits all files without saving and exits the E Editor. Use with care!

I Page Down Page Up F3=Exitl

Editors E.EXE and EPM.EXE EDIT-9 The PC DOS 6.3 E.EXE Editor

File EHELP.HLP (5/5)

I E Editor Help II Cursor Movement Page 121
Up, Down Arrows Moves one line up / down .
Left, Right Arrows Moves one character t o the left / right.
Home Moves to column 1 of the current line.
End Moves to the end of the current line.
Page Up Display s tex t abov e current page.
Page Down Displays tex t below current page.
Ctrl+Home Moves to top line of file .
Ctrl+End Mov es to bottom line of file.
Tab, Shift+Tab Mov es to next and prev ious tab stops .
Ctrl+PgUp Mov es to top of s c reen .
Ctrl+PgDn Mov es to bottom of screen .
Ctrl+Left Arrow Moves to beginning o f word left of cursor.
Ctrl+Right Arrow Moves to beginning of word to right of cursor .
Ctrl+Enter Moves to column 1 of nex t line.

I Page Down Page Up F3=Exitl

E Editor Help II Copying, Mov ing, Deleting Tex t Page 13

1. Press a Mark key (see list on left) once at the
beginning of the text and again at the end of the tex t to highlight
the text to be copied, moved, or deleted .

2 . To copy or move, mov e the cursor t o the desired destinat ion.
3. Press the operator keys (see list on right).

~~-TEXT MARKERS: MARKED TEXT OPERATORS:
Alt+L: LINE mark for one Alt+C : COPY mark

line or paragraph Alt+M: MOVE mark
Alt+Z: mark, character mode Alt+D: DELETE mark
Alt+B: BLOCK mark rectangles Alt+O: OVERLAY mark
Alt+U : UNMARK any area Alt+A : ADJUST mark (Alt+O with fill)
Alt+W : WORD mark

I Page Up F3=Exitl

Edito rs E.EXE and EPM.EXE EDIT-10 The PC DOS 6. 3 E.EXE Editor

The Enhanced Editor

The on line instructions for EPM are available by entering VIEW EPMUSERS as shown
on page EDIT-1. File EPMUSERS.INF is available on the Developer's Connection CD
ROM. The version of EPM shown here in the screen snapshots is the 6.0 BETA from
Volume IV of the Developer's Connection.

EPM can be configured to accept the same line marking and block marking commands that
E.EXE (and PE2, etc) accept. We will set it up that way. EPM allows you to select a
font style and size. For editing programs I prefer to use a fixed spaced font. Let's
look at the setup of EPM. These illustrations may differ slightly from the version of
EPM that you are using.

OS/ 2 2. 0 Program
main.c lab2a

, 1t define I NCL_BASE
ttdefine INCL_NOPMAPI
It include < os2.h>
It include < stdio.h>
It include < stdl i b. h >
It include < string. h >
It include 11 \os20 labs\ la

It define MA I NNAME
It define THREADNAME

Line 1 of 182 Column

SETTING PREFERENCES

1 1 Fi I e

These Circular Arrow
Lines mean that the
ring is enabled.

Insert

Select Advanced Marking, Stream Editing, and CUA accelerators. Advanced Marking
makes EPM behave like E.EXE and. Stream Editing allows you to join and split lines
in the "expected" manner . CUA accelerators will make ALT+ C go to "Command" in the
menu. To get a description of these options, select the menu item (CUA accelerators
is selected above) and press F1. Also select Ring Enabled (on your preferences
menu), which allows you to edit more than one file in this window. Alternatively you
can have on EPM session for each file. In that case, you can still mark and copy or
move text between files. Each EPM session can have a ring of files, and you may run
any number of EPM sessions.

Edito rs E.EXE and EPM . EXE EDIT-11 The Enhanced Editor EPM 6. 0

The Settings dialog allows you to set Fonts, Colors, Keys, etc. Use the Fonts setting
to select a system monospaced font for editing programs. That way the comments line up.
Select a font which is large enough to be easy to read.

Use the Keys setting to set the function of the ENTER key(s), and the Colors setting to
set a pleasant foreground and background color.

=? Enter key configuration
::::2:l Select a key, and then set its action.
~ Enter key definitions only apply when
=f3 ~ream editing.'._!!_ disabled:_ ___ _
=r' . C'
,~ IAlt+Enter ·1
~ , Ctrl+Enter v 1 I

~ ,- --- --- -- - - - - - --- i-::1
~ 2. Move to beginning of next line
~ 3. Like (2), but add a line ii at end of fill v I
=3 I -'-- -------- --~ _i

~1j undo l ~ ~
=i3 +

0 Save settings

Edito rs E . EXE a nd EPM.EXE

i 1 il _!abs

' I' Margins

I 1 ~olors
i : ~aths
! ! r _!!utosave

EDIT - 1 2

U Set foreground

Color selection

Light_red
light_ magenta

Field selection

Mark
Status
Message

-~v:ile11I1o~w•Dtall!3!b sample Text

0 Save settings

The Enhanced Editor EPM 6 . 0

Using the Command [line] Dialog
There are some of us who still like to type commands into our otherwise mouse driven
editor. The "standardized" commands from the E editor still work with EPM. You can
bring up the command dialog by pulling down Command and selecting Command dialog,
or you can simply enter CTRL +I.

Line 1 of 1 Column 1 1 Fi I e Insert

The command dialog lets you enter commands, and remembers the commands you have
previously entered so you can select them w ithout re-entering them. You can use the
command dialog to quickly go to a line number, to add a set of files to the ring,
etc.

I . I

e c:\os20labs\main.c Ir MA1N.c119:5J
1
,, MAIN.C[63: 1]

tl' MA IN. C[7 4: 5]
li MAIN.C[79:9]

e c: \ os2 0 labs\ lab2 a\ main. c

if MAIN.C[79:24]
ii MAIN.C[80:25]

Line 1 of 9 Column

Edito rs E . EXE a nd EPM.EXE

1

EDIT-1 3

3 Files Insert

The Enhanc ed Editor EPM 6.0

COMMAND DIALOG - GO TO A LINE NUMBER

The example below shows you how to go to a specific line number. You can also enter
OS2 commands by typing OS2 on the command line and hitting enter or selecting OK.

void init_line_ptrs e c:\os20labs\lab2a*.c c:\os20labs\l
dir
cd \ os2 Olabs \lab 1 b

{

Line 54 of 196 Column 1 5 Files Insert

OPTIONS - LIST RING

You can select Options and List Ring (or just enter CTRL + G) and see the names of the
files in the ring and select a file. You can also click on the ring icons or use F11 or F12
to go forward or backwards around the ring. Remember that you can have any number
of EPM sessions up and each session may have its own ring. You can quit files with
F3 or save in quit with F4, eliminating them from the ring. See the File Pull-down.

q:\&s2(]t~l)s'(l~~Z~\M,\lttr;Rti •
.c:\&s2ota6sxrall2a\MA1ttc•••••·•···•••
•·~i·1~mm;:a1•r1,1111
·· ···· ···· · · · ··· ·········· · · · · ·· · · ·: :::::::::: :::::::::: ~:~i~:ji i:~ir:: i;:: i r:~i~:::: :::::: ·: ·

.... ·:· ·:: . ::.:::.::;.;:;.;::. :: : : : : ::~~): ~~~: j:::: :: :~~~:~~~:~~::i;~:;;::: ;~.;:.

OS/ 2 2. 0 Program
main.c lab2a

U define I NCL_BASE
U define I NCL_NOPMAP I

Line 1 of 182

Editors E.EXE and EPM . EXE EDIT-14 The Enhanced Editor EPM 6.0

FILE MENU - ACCELERATORS, OPEN vs ADD

The file menu lists function keys which
operate regardless of whether or not the
menu is visible. Technically these are
called accelerators. Add file lets you
add another file to the ring of the current
EPM session, while the Open starts a new
EPM session. The function keys are similar
to those for the E editor as shown on page
EDIT-3.

You can get help on these accelerator keys
by going to Help and then Keys. A list
of these appears at the end of the chapter.

SEARCH

CTRL + S will bring up the search dialog. Once you have set the search criterion, you
can repeat the search with CTRL + F (same as E.EXE) even if the search dialog is not
visible. You can also use this dialog to do a global search and replace. Or, if you prefer,
you can do the search and the search-and-replace operation using the command dialog
with the same commands you used with E.EXE.

OS/ 2 2. 0 Programm ·
main.c lab2a

Udefine INCL_BASE
Udefine IHCL_HOPMAPI
tt include < os2.h>
1t include < stdio.h>
1t include < stdl i b. h >
1t include < string. h >
1t include 11 \os20 labs\ lab

Line

Editors E.EXE and EPM.EXE EDIT-15 The Enhanced Editor EPM 6.0

LINE AND BLOCK MARKING, COPY, MOVE, SHIFT, DELETE, CUT, PASTE

With advanced marking enabled, you can mark lines using ALT+ L (use another ALT+ L to
mark a group of lines). You can delete the marked lines, copy them, or move them r--

using the same keys as you would with the E editor. You can do these operations
on a single file, between files in the ring, and between EPM sessions. ALT+ Y will
move the cursor to the mark. Line, Block and Character marking is supported, as it is
in E.EXE.

msg. identifier
I msg. identifier

3 Fi I es lnser

Edi t o rs E.EXE and EPM . EXE EDIT - l 6 The Enhanced Edito r EPM 6.0

F1
F2
F3
F4
F5
F7
F8
F9
F10
F11
F12

Alt+ F1
Alt+A
Alt+B
Alt+C
Alt+D
Alt+E
Alt+F
Alt+J
Alt+L
Alt+M
Alt+N
Alt+O
Alt+P
Alt+R
Alt+S
Alt+T
Alt+U
Alt+W
Alt+Y
Alt+Z
Alt+ 1

Ctrl + F1
Ctrl + F2
Ctrl + F3
Ctrl + F4
Ctrl + F5
Ctrl + F6
Ctrl + F7
Ctrl + F8
Ctrl + C
Ctrl + D
Ctrl + E
Ctrl + F
Ctrl +I
Ctrl + L
Ctrl + S
Ctrl + BKS
Del
Ins

Selected Key Definitions

Displays help for selected item
Saves the current file.
Quits the current file.
Save and Quit the current file.
Starts a new EPM Session with a new file
Renames the current file .
Adds a file to the ring of the current EPM session.
Undo changes to current line
Switches between the menu bar and the file being edited.
Switches to the previous file in the edit ring.
Switches to the next file in the edit ring.

Inserts a list of various graphic characters at the current cursor position.
Move Mark Itself to current cursor position .
Block-marks the current cursor position.
(*) Copies the marked text.
Deletes the currently marked characters.
(*) Moves the cursor to the end of the current mark.
(*) Fills marked area
Joins the next line with line at the current cursor position
Line-marks the line at the current cursor position .
Moves the marked text.
Types the current file name at the current cursor position.
(*) Overlay the current mark.
Reformats the paragraph from current cursor position, using current margins.
Reformats a marked block of text to a new set of margins.
(*) Splits the line at the current cursor position.
Centers the text within the current mark (or margins, if no mark).
Unmark .
Marks the word at the current cursor position using a character mark.
Moves the cursor to the beginning of the current mark.
Character-marks the current character (use two of these).
Edits the file name on the line at the current cursor position.

Converts current word to uppercase.
Converts current word to lowercase.
Converts marked text to uppercase.
Converts marked text to lowercase.
Moves the cursor to the beginning of the current word.
Moves the cursor to the end of t he current word.
Moves marked text to the left one column. (Block or line marks only.)
Moves marked text to the right one column. (Block or line marks only.)
Repeats the last CHANGE command.
Erases from the current cursor position t o the beginning of t he next word.
Erases from the current cursor position to the end of the line.
Repeats the last LOCATE command.
Brings up the EPM command dialog.
Copies the line at the current cursor position to the command line.
Activates the Search dialog.
Deletes the current line .
Deletes the character at the current cursor position.
Switches between insert and replace modes.

(*) These definitions will be blocked if the CUA Accelerators option is selected.
Instead, the key will activate the corresponding action bar menu item .

Editors E.EXE and EPM .EXE EDI T-17 The Enhan ced Editor EPM 6.0

Selected Commands ,--.

,........,

[#] Go To Line r-.,

ASC Get ASCII Value
BOTTOM Go To Bottom
CD Change Directory ,.--,

CENTER Center Mark
CHANGE Change Text
CHR Get Character for ASCII Value
CLOSE Close the Edit Window
COPY2CLIP Copy to Clipboard

~

DIR Directory List
EDIT Edit File - Add file to ring
FILE Save and Quit

......,

FILL Fill Mark ~

GET Add named file text to current file
LOWERCASE Convert Marked Text to Lowercase
MARGINS Set Text Margins ,,_..._

MATCHTAB Use Words as Tab Stops
MATHx Calculate
MONOFONT Change to monospaced font ,,..--.

NAME Rename Current File
NEWWINDOW Move Current File to a New Edit Window

,,..--.

OPATH Open a File in a PATH Setting,
OPEN Open New Edit Window
OS2 Process OS/2 Command

,----,,

PASTE Paste Text
PATH Show PATH Setting
PRINT Print File
QUIT Quit File
OD Query Date
QT Query Time

,-

SAVE Save File
SET Show Environment Settings
SHELL Start a Command Shell
SORT Sort Marked Lines
TABS Set Tab Stops
TOP Go To Top
UPPERCASE Convert Marked Text to Uppercase ~

VER Show Editor Version
VOL Show Volume Label

Ed i tors E.EXE a n d EPM . EXE EDIT - 1 8 The En hanc ed Ed i tor EPM 6.0

OS/2 2.0 for Application Developers

Chapter L 1

Laboratory Project One

vent=009 Time=00000687 ms

I II I

I II I

I II I

I II I

I II I

11111 I

File Edit Search Options Command

II event C6l: allocate CHAR Array6COx200l READ/WRITE/COMMIT/OBJ_TILE

ulAllocFlags = PAG READ ' PAG WAITE I PAG COMMIT I OBJ TILE: if (re= (DosAlloEMem (PUOID) lpchArray~. Ox200L , ul~llocFlags)))
terminate !"Unable to Hocate Array6\n", re};

postushorts 6):
printf ("Event 6 - Allocate Ox200 b'Jte Array - Address Ox%081X - flags

pchArray6 , ulAllocFlagsJ;
II event C7 l : allocate CHAR Array 7 COx200 I READ /WRITE /COMMIT

By Charles R. Chernack

OS / 2 2.0 for Developers Ll-1 Laboratory Project One 03/30 / 93

Contents

Laboratory Project One

NOTES:

Part A - 16 Bit Application
Analysis of PM Application EVENTLOG.C
Analysis of OS/2 Application LABlA.C

Part B - Conversion 16-Bit to 32-Bit Application
Warm-Up Questions .
Programming Steps .
Follow-Up Questions

Part C - Allocation of Private Memory Objects
Warm-Up Questions
Programming Steps
Follow-Up Questions

Part D - Allocation of Shared Memory Objects
Warm-Up Questions
Programming Steps
Follow-Up Questions

Part E - Accessing Shared Memory Objects
Organization of Part E
Programming and Analysis of Part E

Part F - SubAllocation
Organization of Part F
Programming and Analysis of Part F

Answers to Questions

Lab Hints

Ll-3

Ll-4
Ll-5
Ll-7

Ll-9
Ll-10
Ll-11
Ll-12

Ll-14
Ll-15
Ll-16
Ll-17

Ll-19
Ll-20
Ll-21
Ll-23

Ll-26
Ll-27
Ll-29

Ll-33
Ll-34
Ll-36

Ll-38

Ll-56

This is the table of contents for lab project one from the "advanced" OS/2 2.0 programming class . Now
that you have taken this class, you are well able to deal with these labs. The labs are very tutorial and
as you can see each lab is about 50 pages. There is no dependency between labs, so you can do only
those parts which are of interest to you. Part A is a 16-bit OS/2 and a 16-bit Presentation Manager
application which talk to each other. In Part A you just do an analysis of the code . Even if you do
not know Presentation Manager, you can review the answers to the questions!

Part B involves converting the 16-bit code to 32-bit code . Since named shared memory and
WinPostOueueMsg are compatible between 16 and 32-bit applications, you can convert either or both of
the 16-bit applications and they will continue to work.

Parts C, D, E and F are memory allocation exercises. Part F covers inter-process suballocation and
freeing of memory, and is a good exercise. To print the text of these labs, unzip disk#4 (see page 4 at
the beginning of the supplement) and copy the files using the /B option to a laser printer supporting
Hewlett Packard PCL5. The Laserjet 3 or 4 may be used.

Laboratory Project One Ll-2 Contents

OS/2 2.0 for Application Developers

Chapter L2

Laboratory Project Two

Data Graphics

TID=03 PID=00229 Pri=0200 Event=021 Time=00000406 ms

by Charles R. Chernack

OS/2 2.0 for OS/2 Developers L2-l Laboratory Project Two 3/30/93

Contents

Laboratory Project Two

NOTES:

Overview

Part A - 32-Bit Semaphores, Threads and Timers
Objectives and Block Diagram
Warm-Up Questions
Programming Steps

Part B - Thread Priority
Objectives, Overview, API Calls
Block Diagram
Warm-Up Questions
Programming Steps

Part C - Thread Synchronization
Objectives, Overview, API Calls
Source Files and Structures
Programming Steps
Review Questions .

Part D - MuxWait Semaphore Setup
Overview
API Calls
Warm-Up Questions
Programming Steps

Part E - Edge / Level Operation of Event Semaphore
Objectives, Overview, API Calls
Programming Steps

Answers to Questions

Lab Hints .

L2-l

L2-3

L2-4
L2-4
L2-5
L2-7

L2-10
L2-10
L2-ll
L2-12
L2-15

L2-18
L2-18
L2-19
L2-21
L2-27

L2-30
L2-30
L2-31
L2-33
L2-37

L2-44
L2-44
L2-45

L2-47

L2-67

The best parts of this lab are parts C, D and E. But the entire lab is a good programming exercise and
develops the code for the "walk thread" demonstration programs. If you are short on time just do part C
or parts C and D.

Laboratory Project Two L2-2 Contents

,.--.

OS/2 2.0 for Application Developers

Chapter L3

Laboratory Project Three

Trace!
=== === "'Trace.?.

Qption 1
!erminate

LAB30 Control Panel

F======r====df#l ------~~.

i-··---···i 0 Use OosSubAlloc 1 lsmu !
I [._ __ J __ @_u_s_e_o~o-sA_1_1o~cM_em_~

Client#2

I START l 0 Use OosSubAlloc

@Use OosAllocMem

by Charles R. Chernack

08 / 2 2 . 0 f or Developers L3 - l Laborat ory Pro j ec t Three 03 / 30/93

Contents

Laboratory Project Three

NOTES:

Overview

Part A - malloc, alloca, DosSubAllocMem
Overview

Part

OS/2 API for Part A
C Functions for Part A
Technical Note on malloc, _alloca
Technical Note on ANSI Sequences
Line/Grid Plotting in EVENTLOG/TOOLS.C
Terminate / Trace Options in EVENTLOG / STRUCS.H
Warm-Up Questions
Programming Steps
Review Questions

B - Conversion of Lab 2 Part D to Multithread
Overview
C Functions for Part B
Technical Note on C Set / 2 Libraries
Programming Steps .

Part C - Buffering of Stdout
Overview
C Functions for Part C
Technical Note on C Set / 2 File Handling
Programming Steps .

Part D - Data Transport through Queues
Overview
C Functions for Part D
OS / 2 API for Lab 3 Part D
Programming Steps

Answers to Questions

Lab Hints

L3-l

L3-3

L3-5
L3-5
L3-5
L3-6
L3-6
L3-7
L3-8
L3-9
L3-10
L3-13
L3-17

L3-19
L3-19
L3-19
L3-20
L3-23

L3-27
L3-27
L3-27
L3-28
L3-29

L3-32
L3-32
L3-33
L3-34
L3-35

L3-50

L3-66

Part A generates performance graphs on malloc, alloca, and DosSubAllocMem. It is an interesting
programming exercise. If you want to know exactly how long something takes, you may use the timing
features of IPMD or ASDT (see the workshop help for information on ASDT).

Skip part B. Part C is a directed demonstration of the buffering of standard out. I'd skip it.

Part D is an excellent lab which uses 5 sessions (see the picture on the previous page), and which deals
with the relationship between the sessions. All the code is written for you except for parts of LAB3D.C.
LAB3D.EXE is a server program using an OS/ 2 queue. The control panel and eventlog are presentation
manager applications. The server communicates with the control panel and eventlog using named shared
memory and also using WinPostOueueMsg (to put messages into their PM message queue). When one of
the "start" pushbuttons is depressed, a queue message is sent from the control panel to the server which
in turn starts one of the clients. The clients transfer a file to the server (say copying BSEDOS.H) and
then terminate. When the client terminates, the server sends a message to the control panel to
reactivate the "start" pushbutton. A great lab!

Laboratory Project Three L3-2 Contents

OS/2 2. 1 for OS/2 Developers

Chapter L4

Laboratory Project Four

Data Gra hies !oab

10=01 PID=00257 Pri=O

SIGFPE
SIGTERM
SI GAB RT
SIGINT
SIGUSR1
SIGUSR2
SIGUSR3

by Charles R. Chernack

OS/2 2.0 f o r Deve l opers L4-l Laborat ory Pro j ect Fou r 04/22/93

Contents

Laboratory Project Four

NOTES:

Overview

Part A - Signal Handling
Overview
C Functions for Part A
Technical Notes on Signals
Warm-Up Questions
Programming Steps .

Part B - Signals for Error Recovery
Overview
Setting up for beginthread()
Programming Steps .

Part C - Building a Dynamically Linked DLL
Overview
IBM C Set / 2 API for Part C
Technical Background
Programming Steps
Review Questions

Part D - Building a Statically Linked DLL
Overview
Programming Steps .

Part E - Building a Subsystem
Overview
Warm-Up Questions
Programming Steps

Answers to Questions

Lab Hints

L4-1

L4-3

L4-6
L4-6
L4-7
L4-8
L4-10
L4-12

L4-21
L4-21
L4-22
L4-23

L4-29
L4-29
L4-29
L4-30
L4-34
L4-39

L4-41
L4-41
L4-42

L4-43
L4-43
L4-44
L4-46

L4-50

L4-66

Parts A and B demonstrate signals. In part A we raise signals, and in part B we cause exceptions which we
deal with using signal handing. Part C is a great DLL lab which demonstrates how to export data pointers
as well as procedure addresses. Part C also uses #pragma data seg to create static shared-private and
static shared_shared data. So I strongly recommend Part C if you want to learn more about DLLs.

Part D adds a few concepts which are interesting. I'd skip part E because the write-up is not complete.
The solution to Part E is complete and it does illustrate a "subsystem" use of a DLL.

Laboratory Project Four L4-2 Contents

,-

OS/2 2. 1 for Software Developers

Appendix M

Memory Management API

by Charles R. Chernack

OS / 2 2.1 for Developers M-1 Memory Management API

2 Process Address Space

PROCESS

LINEAR
ADDRESS

SPACE

PRIVQTE
MEMORY

512 MB

NOTES:

#1

page
directory

private
objects
't:g~es

shared
objects
't:g~es

PHYSICAL
MEMORY

10 MB

,,,

PROCESS

page
directory

private
objects
't:g~es

shared
objects

't:g~es

#2

LINEAR
ADDRESS

SPACE

512 MB

Each process in 32-bit OS/2 may use up to 512 MB of virtual (linear) address space. The 512 MB limit
comes from the restriction that all memory allocated by a 32-bit application, and all procedures called
by a 32-bit application , must map into the 16-bit (tiled) address space.

Memory allocation in 32-bit OS/2 starts at 1 OOOOH (hex), or at the f irst 64K boundary. The first 64K of
address space is not assigned due to a quirk of the CPU. Private objects -- that is objects which belong
to this process and which are not shared with other processes -- are allocated from the low address space
(shown at the top in the drawing). Shared objects are allocated from the high end of t he address space
towards the low end. This form of memory allocation is ca lled "sparse allocation", in that the address
space is not fully populated .

A design objective of 32-bit OS/2 was to move away from the Intel Protected Mode architecture. To this
end , a FLAT CODE and DATA segments which start at 0 and are 512 MB long are established in the GOT.
These GOT ordinals are the CS, OS, SS, and ES for all 32-bit processes.

Me mory Manageme nt API M-2 ~ Process Address Space

,--...

~

--..

,_.....,

.-
,--,

,..-,

~~ 3 Table of Contents

Appendix M - Memory Management API .

Private Memory Allocation
DosAllocMem
DosQueryMem
DosSetMem .
DosFreeMem

Shared Memory Allocation
Concepts of Shared Memory
DosAllocSharedMem .

Gettable Shared Memory
Giveable Shared Memory

DosGetNamedSharedMem
DosGiveSharedMem
DosGetSharedMem

Questions .
MEMDEM Demonstration Program

Answers to Questions

Memory Management API M-3

M-1

M-4
M-4
M-6
M-7
M-8

M-9
M-9
M-10
M-11
M-12
M-13
M-14
M-15

M-16
M-17

M-18

Table of Contents

4 DosAllocMem

re =

DosAllocMem (PPVOID ppb,
ULONG cb,
ULONG flag);

0 NO ERROR
8 ERROR NOT ENOUGH MEMORY - - -
87 ERROR INVALID PARAMETER
95 ERROR INTERRUPT

PCH pchArray6

-->
<-
<--

pointer to pointer
size in bytes
allocation flags

flags from BSEMEMF.H

PAG READ Ox00000001U
PAG WRITE Ox00000002U ,-.
PAG EXECUTE
PAG COMMIT
OBJ TILE

Ox00000004U
Ox00000010U
Ox00000040U

ulAllocFlags = PAG _READ I PAG _WRITE I PAG _COMMIT I OBJ_ TILE;
DosAllocMem ((PPVOID) &pchArray6, Ox200, ulAllocFlags);

NOTES:

DosAllocMem does not allocate physical memory. It allocates linear address space. This is "page
table" space. If you specify PAG COMMIT, then the first time you reference the memory actual RAM is
allocated. This is called lazy commit.

The memory allocated is private to the process. Thus it starts in the low part of the linear address
space . You cannot and do not specify the address of the memory. OS/2 2.1 finds free address space in
the context of your process, and allocates that space. It then loads up your pointer to point to the
beginning of your memory object.

In OS/2 2 .1 memory objects allocated with DosAllocMem are always object tiled, which means that the
memory address starts on a 64K boundary. Whenever a memory object is allocated by 32-bit code, one or
more entries are made in the 32-bit process's LDT. Thus 16-bit services may easily address and use the
memory object. Even if you do not specify OBJ TILE, DosAllocMem will consume a minumum
of 64K of linear address space for each allocation. All memory objects are by default OBJ TILE or
selector mapped. That means that each object can map to the LDT and does start on a 64K boundary .

Prior to General Availability (GA) the PAG COMMIT actually caused physical RAM or disk backing store to
be allocated. This is no longer the case. PAG COMMIT now makes the entire memory object ready for
use: memory will be allocated as you use it. -

The size of a memory object cannot be changed. A new object may be allocated just after this one on a
subsequent call, and thus there is possibly no room for expansion. So you simply are not allowed to do it.

Every memory object is supported by an arena record. Each process has a private arena. There is one
shared arena which contains one arena record per shared objects; and then there is a system arena
for OS/2 system memory objects.

Memory Management API M-4 DosAllocMem

r- 5 Memory Allocation Quiz

LINEAR
PHYSICAL ADDRESS Pit\GE Tit\BLE

SPACE MEMORY
p

[L 4 BYTES
r--....

4096 BYTES
4 BYTES 4096 BYTES - -

-·--.. _··~-.. 4 BYTES 4096 BYTES
4 BYTES ~ _ 4096 BYTES 4K BYTES

~

-
..... 4096 BYTES - -

4096 BYTES
4 BYTES 4096 BYTES

; 60K BYTEs :.:; 4 BYTES 4096 BYTES Jif.18%%%:~X0.J.ff.X@ 4 BYTES 4096 BYTES /.-/.@?JM"//// .. <:%..
~w1•*~lli6f~ 4 BYTES 4096 BYTES

4096 BYTES
4096 BYTES

- - 10 MB

512 MB

QUESTIONS:

1] If I allocate 200 bytes of read/write committed memory, how much
memory can I access before I get a protection fault?

21 How much page table space is used by the 200 byte allocation?

3] If I allocate 2 64K arrays read/write committed, and they appear in
consecutive 64K addresses, how much memory can I access starting
at the beginning of the first array?

41 If I allocate 200 bytes of read/write committed memory, when will
the present bit be set in the appropriate page table entry?

Memory Management API M-5 Memory Allocation Quiz

6 DosQueryMem

DosOueryMem (PVOID pb,
PULONG pcb,
PULONG pFlag};

re

0 NO ERROR
87 ERROR INVALID PARAMETER - -
95 ERROR INTERRUPT
487 ERROR INVALID ADDRESS - -

Event 3 - Allocate Ox200 byte Array - Address
Event 4 - Allocate Ox200 byte Array - Address
Event 6 - Allocate Ox200 byte Array - Address
Event 7 - Allocate Ox 200 byte Array - Address
Event 8 - Allocate Ox200 byte Array - Address
Query Base Ox00480000 Query Length Ox OOOOlOOO
Query Base Ox00481000 Query Length OxOOOOFOOO
Query Base Ox00490000 Query Length OxOOOOlOOO
Query Base Ox00491000 Query Length OxOOOOFOOO
Query Base Ox004AOOOO Query Length OxOOOOlOOO
Query Base Ox004A1000 Query Length OxOOOOFOOO
Query Base Ox004BOOOO Query Length OxOOOOlOOO
Query Base Ox004B1000 Query Length Ox OOOOFOOO
Query Base Ox004COOOO Query Length OxOOOlOOOO
Hit any key to Continue

NOTES:

<-
<->
-->

starting query address
size of region
flags found

flags from BSEMEMF.H

PAG READ Ox00000001U
PAG WRITE Ox00000002U
PAG EXECUTE Ox00000004U
PAG GUARD Ox00000008U
PAG COMMIT Ox00000010U
OBJ TILE Ox00000040U -
PAG DEFAULT Ox00000400U
OBJ GETTABLE Ox00000100U
OBJ GIVEABLE Ox00000200U -
PAG SHARED Ox00002000U
PAG FREE Ox00004000U
PAG BASE Ox00010000U

Ox00480000 - flags Ox00000057
Ox00490000 - flags Ox00000057
Ox 004AOOOO - flags Ox00000053
Ox004BOOOO - flags Ox00000013
Ox004COOOO - flags Ox00000003
QueryFlags Ox00010017
QueryFlags Ox00000007
QueryFlags Ox00010017
QueryFlags Ox00000007
QueryFlags Ox00010013
QueryFlags Ox00000003
QueryFlags Ox00010013
QueryFlags Ox00000003
QueryFlags Ox00010003

The query call allows you to look at any address in the linear address space. The second parameter is an
input-output parameter. On input, it represents how far you would like to query. On output, it is how
far the query proceeded before it found a change in the flags. Certain flags such as OBJ GIVEABLE,
OBJ_GETTABLE, and OBJ_ TILE are not reported by this call. -

Memory Management API M-6 DosQueryMem

7 DosSetMem

DosSetMem (PVOID pb,
ULONG cb,
ULONG flag);

re

0 NO ERROR
5 ERROR ACCESS DENIED - -
8 ERROR NOT ENOUGH MEMORY - - -

87 ERROR INVALID PARAMETER
95 ERROR INTERRUPT
212 ERROR LOCKED
487 ERROR INVALID ADDRESS
32798 ERROR CROSSES OBJECT BOUNDARY

NOTES:

< -- region address
< -- number of bytes
< -- access requested

flags from BSEMEMF.H

PAG READ Ox00000001U
PAG WRITE Ox00000002U
PAG EXECUTE
PAG GUARD
PAG COMMIT
PAG DECOMMIT
PAG DEFAULT

Ox00000004U
Ox00000008U
Ox00000010U
Ox00000020U
Ox00000400U

This call allows you to set memory attributes on a per-page basis. The attributes you would normally
change would be PAG WRITE, PAG COMMIT, and PAG DECOMMIT. Generally you commit memory when
you allocate it with DosAllocMem or DosAllocSharedMem. There is seldom a reason not to commit
memory when you allocate it now that we have lazy commit. That is, backing store is not provided
until you touch the memory.

However, if you want to free storage without releasing the memory object, you can decommit it . When
PAG DECOMMIT is the flag parameter, do not use any other flags. It just works that way. If you are a
good-citizen and decommit memory which you do not need, then you can re-enable the address space by
using PAG COMMIT. PAG COMMIT can never stand alone as a parameter -- you must use at least one of
PAG READ, PAG WRITE orPAG EXECUTE. Alternatively you may use PAG DEFAULT, which represents the combination of PAG READ, PAG - WRITE and PAG EXECUTE attributes you gave the object when you initially allocated it. - - -

PAG EXECUTE has no effect in the Intel architecture. The only bit in the page tables you can affect is
the R/W bit. Thus PAG READ has no effect. Only PAG WRITE does something. It allows you to make some part of your memory space read-only. Code is always re-ad -only. We will see that when we look at the page
tables. Data can be made read-only which is a protection against wild pointers. That is, once you have
set up some data and are going to pass that to a subroutine or procedure or DLL, you can make it read
only. That will cause an exception should that errant procedure or DLL accidentally try to write to the
memory.

Shared memory, once committed, cannot be decommitted. When you change the read/write attributes of
shared memory, you are affecting only your access to that shared memory.

Memory Management API M-7 ~ DosSetMem

s DosFreeMem

DosFreeMem (PVOID pb); <-- region address

re

0 NO ERROR
5 ERROR ACCESS DENIED

- -
95 ERROR INTERRUPT
487 ERROR INVALID ADDRESS

- -

NOTES:

DosFreeMem releases a previously allocated private or shared memory object from the virtual-address
space of the subject process.

Freeing a shared memory object decrements the reference count for the associated object. If the
resulting count is zero (that is, no other references to the shared memory object exist throughout
the system), then the object is deleted. The deletion of the shared memory object releases the
backing storage for the committed pages within the object.

Memory Management API M-8 DosFreeMem

,.---- 9 Concepts of Shared Memory

1) Reference Count determines Life of Object
2) Address Space Reserved for Life of Object
3) Page Tables Allocated in other processes when activated
4) Giveable - You Activate Address Space and Increment

Reference Count in context of another process
5) Gettable - Process Activates its own Address Space

and updates its own reference count

named unnamed giveable unnamed gettable

DosAllocSharedMem DosAllocSharedMem DosAllocSharedMem

other process you activate other process
activates its own other process's activates its own
address space using address space using address space using

DosGetNamedSharedMem DosGiveSharedMem DosGetSharedMem

public if you know private public if you know
the name the linear address

Q]

Q]

Where is the reference count/use count stored? IN Con.J--<t)' f f..ecoJ

NOTES:

How can we see the reference count with OS/2? Using LA~~ rsT AT
Kernel Debug?

Shared memory is an important form of interprocess communications in OS/2. One strong feature of OS/2
is the isolation of memory objects between processes . Shared memory allows an intentional breakdown of
that isolation.

A shared memory object (and a shared semaphore and a DLL) has a life span. It exists as a system object
so long as its REFERENCE COUNT is greater than 0. When it is created the reference count is 1. The
reference count is always the number of processes which have access to a memory object. Giving a memory
object multiple times to the same process has no incremental affect.

The primary benefit of named shared memory is that any process knowing the name can gain access to the
memory.

The primary benefit of unnamed giveable shared memory is that a process may increment the reference
count of that memory object in the context of a target process, and then free the memory in the context

---.. of itself. In this manner, the object can be "transferred" to another process without risk that the
reference count will go to zero and the object will be discarded .

Me mo r y Management API M-9 Shared Memo r y

10 DosAllocSharedMem

DosAllocSharedMem (PPVOID ppb,
PSZ pszName,
ULONG cb,
ULONG flag);

re

0 NO ERROR -
8 ERROR NOT ENOUGH MEMORY - -
87 ERROR INVALID PARAMETER - -
95 ERROR INTERRUPT
123 ERROR INVALID NAME
183 ERROR ALREADY EXISTS - -

PCH pchArray3;

-->
<-
<-
<--

pointer to pointer
name or 0
size in bytes
allocation, flags

flags from BSEMEMF.H

PAG READ Ox00000001U
PAG WRITE
PAG EXECUTE
PAG COMMIT
OBJ TILE
OBJ GETT ABLE
OBJ GIVEABLE

Ox00000002U
Ox00000004U
Ox00000010U
Ox00000040U
Ox00000100U
Ox00000200U

,., L~ PSZ pszName = "\\SHAREMEM\\LAB1 F";
ulAllocFlags = PAG_READ I PAG_WRITE;
DosAllocSharedMem ((PPVOID) &pchArray3, pszName, Ox20000, ulAllocFlags);

NOTES:

This call is used to allocated named and unnamed shared memory. In fact, the call does not allocate
memory but allocates linear address space in the context of this process. The "high" or shared
address space is used. Once the address space is assigned, the exact same addresses are reserved in
the context of every process which is running and every process which ever will run, until this
particular shared memory object is deleted. That happens when the REFERENCE COUNT goes to zero.
The reference count is actually the number of context records attached to this particular object's
arena record in the shared arena.

If the memory is named, then it is automatically gettable (you must not specify OBJ GETTABLE).
If the memory is unnamed, then you must specify OBJ GETTABLE or OBJ GIVEABLE or both . When an
appropriate API is executed to activate the address space in the context of another process
(DosGiveSharedMem, DosGetSharedMem, or DosGetNamedSharedMem) then the reference count is
incremented and the other process may use the address space.

When each process whose address space has been activated frees the address space (DosFreeMem) then
the reference count of the shared object goes to zero and the address space is available for
reassignment. A process also frees the memory when it terminates (OS/2 does this automatically).

Shared memory objects may be committed at creation or by using DosSetMem. Once committed, shared
memory may not be decommitted.

Memory Management API M-1 0 DosAllocSharedMern

.-- 11 Gettable Shared Memory

Named Shared Memory and OBJ_ GETTABLE unnamed shared memory
is gettable. That means that any process which wishes to access the
memory can issue a DosGetSharedMem or DosGetNamedSharedMem
and then access to the memory object.

DosGetSharedMem and DosGetNamedSharedMem increment the usage
count of that memory object, and activate the address space in the
context of the process making the call.

A benefit of gettable objects is that the creator does not have to
know the Pl D(s) of the recipient(s).

A problem with gettable memory objects is that the creator must not
free the object before at least one other process gets it, else the
object will be discarded.

Unnamed shared memory objects may be both giveable and gettable.

Memory Management API M-11 DosAllocSharedMem - Gettable

1 2 Giveable Shared Memory

Giveable unnamed shared memory may be given to another process
using DosGiveSharedMem. The effect of this call is to increment
the usage count and to activate that linear address space in the
donee process. The donor specifies the initial permissions
(PAG READ, PAG WRITE) in the donee process.

Giveable objects are private between the processes which share
them. Any process holding giveable memory may give it to any
other process. Nothing is "lost" when you give shared memory to
another process.

As with gettable shared memory, any process having access to the
memory object may free it using DosFreeMem, or close (which has
the same effect). This decrements the use count.

Memory Management API M-12 DosAllocSharedMem - Giveable

("' 13 DosGetNamedSharedMem

DosGetNamedSharedMem (PPVOID ppb, -- > pointer to pointer
PSZ pszName, < -- name
ULONG flag); < -- access requested

re =
0 NO ERROR
2 ERROR FILE NOT FOUND - - -
8 ERROR NOT ENOUGH MEMORY
87
95

- - -
ERROR INVALID PARAMETER - -
ERROR INTERRUPT

123 ERROR INVALID NAME
212 ERROR LOCKED

flags from BSEMEMF.H

PAG READ Ox00000001U
PAG WRITE Ox00000002U

Enables access to a named shared memory object that was allocated
by DosAllocSharedMem

Increments the object's reference count

At least one process must call this function prior to the allocating
process calling DosFreeMem, else the memory object will be released

#define MEMFLAGS PAG_READ I PAG_WRITE
#define MEMNAME = "\\SHAREMEM\\Eventlog"
DosGetNamedSharedMem ((PPVOID) &pbBaseAddress, MEMNAME, MEMFLAGS);

NOTES:

Named shared memory is the easiest way to share information between a set of processes which you are
writing. Shared memory is compatible between 16 and 32-bit applications, and of course between OS/ 2
and Presentation Manager programs.

Generally your first application in will allocate the memory, and other applications or processes which come
in later will use the name which will be defined in a common .H file . The use of a #define (shown above) is
more efficient than using a memory variable. The #define is also easily replicated in the .H files of every
application.

Memory Management API M-13 DosGetNamedSharedMem

14 DosGiveSharedMem

OosG iveShared Mem (PVOIO pb,
PIO pid, I

ULONG flag);

re =

0 NO ERROR
5 ERROR ACCESS DENIED
8
87
95
212
303
487

- -
ERROR NOT ENOUGH MEMORY - - -
ERROR INVALID PARAMETER - -
ERROR INTERRUPT
ERROR LOCKED
ERROR INVALID PROCID - -
ERROR INVALID ADDRESS - -

< -- identify by address
< -- PIO of recipient
< -- recipient access rights

flags from BSEMEMF.H

PAG READ Ox00000001U -
PAG WRITE Ox00000002U

Gives another process access to an unnamed memory object
allocated 11 giveable 11 by OosAllocSharedMem

Increments the object's reference count

NOTES:

Since we are activating the recipient's address space, we set the R/W bits in the page table entries for
this address space in the recipient ' s address space. The recipient can always change their access rights
using DosSetMem, but we set up the initial rights.

Memory Manageme nt API M-14 DosGetNamedSharedMem

.-

I' 1 5 DosGetSharedMem

DosGetSharedMem (PVOID pb, <-- identify by address
U LONG flag); < -- access rights

re =

0
5
8
87

NO ERROR
ERROR ACCESS DENIED - -
ERROR NOT ENOUGH MEMORY - - -
ERROR INVALID PARAMETER - -

95 ERROR INTERRUPT
212 ERROR LOCKED

flags from BSEMEMF.H

PAG READ Ox00000001U -
PAG WRITE Ox00000002U

Enables this process to access an unnamed memory object allocated
11 gettable 11 by DosAllocShared Mem

Increments the object's reference count

At least one process must call this function prior to the allocating
process calling DosFreeMem, else the memory object will be discarded

NOTES:

Memory Management API M-15 DosGetSharedMem

16 DosAllocSharedMem Questions

5] Why would anyone want to "get" shared memory? When would you use named
vs unnamed gettable shared memory?

a]

6] What is the usage count or reference count with shared memory. How is that
different than with private memory?

a]

7] In order to "get" the memory, what must another process know? How does
shared memory differ from global variables?

a]

8]

a]

9]

a]

[]

If a process "gives" shared memory to another process, what must also be
given? Will the name alone suffice?

There are two issues regarding the use of DosSetMem to decommit memory -
one regarding private memory and one regarding shared memory. What are
those issues?

Check your answers on page M-18.

Memory Management API M-16 DosAllocSharedMem Questions

~ 17 MEMDEM.EXE - Shared Memory Demonstration

NOTES:

Start \OS22LABS\ DEMOS\MEMDEM\MEMDEM two or three times . Once named shared memory is allocated, that memory is gettable in the other processes. You may experiment with changing the attributes and freeing the memory. To reallocate you will have to close all the processes.

When unnamed shared memory is allocated, its address is placed where all instances of MEMDEM .EXE can find it. You must allocate it OBJ GIVEABLE or OBJ GETTABLE or both. You can then use the Unnamed pull-down to give or get the unnamed shared memory between processes.

Memory Management API M-17 \OS22LABS \ DEMOS \ MEMDEM \MEMDEM.EXE

Answers to Questions

<page M-5 >

11 If I allocate 200 bytes of read/write committed memory, how much memory can
access before I get a protection fault?

a] You can access 4K bytes, because OS/2 allocates a page at a time.

21 How much page table space is used by the 200 byte allocation?

a] 64K of linear address space is consumed, so 16 page table entries (64 bytes
of page tables) are used.

3] If I allocate 2 64K arrays read/write committed, and they appear in
consecutive 64K addresses, how much memory can I access starting at the
beginning of the first array?

a] You could access 128K without a page fault. This question is placed in the
workshop to remind you that in the 16-bit environment each allocation
involved a unique LDT entry, and thus a side effect of the segmented
architecture was a certain amount of object isolation. That is not the case
in flat mode.

4] If I allocate 200 bytes of read/write committed memory, when will the present
bit be set in the appropriate page table entry?

a] The memory will be committed and the present bit will be set when the memory
is first accessed. We will be able to see that with Kernel Debug.

<page M-16>

5] Why would anyone want to "get" shared memory? When would you use named vs
unnamed gettable shared memory?

a] Shared memory is a form of inter-process communication in OS/2. One of the
benefits of OS/2 is that processes are isolated from each other. That is
also one of the detriments. Shared memory is a way to break down that
isolation for selected memory objects.

If you are "posting" information on a "bulletin board", so that any process
can get to it, then named shared memory is ideal: any process which knows
the name can get access to the memory.

Unnamed shared memory is useful when you have a large number of shared memory
objects to pass, and you can conveniently pass the address of the objects to
another process via named shared memory or via a queue.

Unnamed giveable memory allows you to pass the memory to another process and
then free it. If the memory is gettable, you cannot free it until you know
that the other process has executed a "get". In many cases, you are going to
keep the memory around for the life of the application, so you do not worry
about freeing it. Then gettable memory is fine.

Memo r y Management API M-1 8 Answers to Questions

6] What is the usage count or reference count with shared memory. How is that
different than with private memory?

a] There is no reference count for private objects. The reference or use count
for shared objects lets OS/2 know when the object can be discarded. The rule
is simple: when no one is using it get rid of it.

7] In order to "get" the memory, what must another process know? How does shared
memory differ from global variables?

a] A process can "get" gettable shared memory using the name of the shared
memory (if it is named) or the linear address if it is unnamed. The linear
address is effectively the "handle" for unnamed shared memory.

Shared memory is different than global variables, in that shared memory can
be used between processes while global variables work only in the context of
one process.

8] If a process "gives" shared memory to another process, what must also be
given? Will the name alone suffice?

a] Giveable shared memory is always unnamed. Thus the linear address must be
communicated. There is no name. It was a trick question.

9] There are two issues regarding the use of DosSetMem to decommit memory -- one
regarding private memory and one regarding shared memory. What are those
issues?

a] With DosSetMem when you specify the flag PAG DECOMMIT, you can specify no
other flag bits. It's just the way it works . Shared memory cannot be decommitted.

Memory Management API M-19 Answers to Questions

20 Notes

Memory Management API M-20 Notes

OS/2 2.1 for Software Developers

Appendix S

Signal Handling

Some material in this chapter
courtesy IBM Toronto Lab

OS / 2 2.1 for Developers S-1

by Charles R. Chernack

Signal Handling

2 Table of Contents

Appendix S - IBM C Set Signal Handing

Technical Background
Memory Protect Violation in a PM Program
Vectoring and Exception .
General Protection and Page Faults
C Functions for Lab 4 Part A
Technical Note on Signals .

S-1

S-3
S-5
S-6
S-7
S-8
S-9

Appendix S - Signal Handling S-2 Table of Contents 03/05/94

Technical Background

Signals in OS/2 1 .X were used for CTRL + C, CTRL +BREAK and SIGTERM notification.
Signals were also used as a form of interprocess communication. That is, you could send
a signal FLAGA, FLAGB or FLAGC to another process. The caused a software interrupt in
the context of the target process.

In OS/2 2.1 signals are not used as a form of interprocess communication. Generally
signals are the C library's way of notifying an application of an event. 32-bit
signals work in the context of each thread, and they provide a simplified, standardized
and portable way of dealing with extraordinary information.

We will tend to focus on a memory protect violation in this appendix, and also in
appendix E (Exception Handling). The two appendices should be read together. But we
will broaden the discussion to include other extraordinary events.

Signals are a much simpler and less powerful way of dealing with exceptional events
which occur in the context of a thread. But in many cases signal handing will provide
the tools you need to get your job done. They are not as robust as exception handlers,
but they may get your job done.

LINEAR MEMORY

Application

...... · .. ·.·.···

SEL

GOT
BASE=0

PAGE
FAULT

OFFSET

LINEAR
ADDRESS

~~ :::: PAGE ::.::
:::: TRANSLATION ~ -

PHYSICAL
ADDRESS

PHYSICAL MEMORY

In the figure above an application accesses address space based on the Intel hardware:
there is a 448 MB flat segment (0:32 segment) described in the Global Descriptor Table,
and then there are specific pages in that virtual 448 MB which are mapped to physical
memory via Intel hardware page translation. The GOT and the page translation tables are
set up by the operating system. The SEL portion of the address is set up for you by the
OS/2 loader to point to the correct GOT entry (53H).

Appendix S - Signal Handling S-3 Technical Background

The program provides a virtual (linear) address using a ULONG pointer reference. For
example, if the program references address Ox100, it becomes 53H:000001 OOH. The
1 OOH (hex) is technically the OFFSET from the start of the segment. The segment base
is equal to 0, so the linear (virtual) address is Ox100. If the linear address is
greater then 448 MB (the GOT limit) there is a general protection fault. If the linear
address is mapped to a not present page, there is a page fault. In the case of Ox 100,
there would be a page fault since OS/2 never assigns addresses below Ox 10000 to the
application.

The page fault causes a hardware interrupt which is routed to the OS/2 kernel. Now not
all page faults are fatal. You might reference a page which has been assigned to you
but for which there is currently no backing store. OS/2 will then handle the page fault
by allocating the storage, and then go back into your application and re-run the
offending instruction (this time, without fault).

If you get a GP fault (address > 448 MB) or you get a fatal page fault, then OS/2 will
put up the hard error screen and terminate your application. You can use AUTOFAIL
and/or DosError to suppress the hard error screen.

If the thread which caused the fault has registered an exception handler (see Appendix
E), then before taking the default action (of terminating your application) the OS/2
kernel will call your exception handler.

If you use /Rn when you compile, then you are using the subsystem library which
does not contain exception handlers. We shall assume that you did not use /Rn. In
that case, the C Set runtime registers its own exception handler Exception for each
thread you create using beginthread. The C startup code registers this handler for
thread 1. -

The illustration on page DLL-18 shows the startup code. As you can see, it registers
Exception for thread 1. The primary difference between DosCreateThread and
beginthread is that beginthread registers Exception for each thread you create.

There are other differences too... -

A flowchart of C's Exception handler is shown on page E-9. This flowchart is slightly
different for C Set + + and C Set/2: on a fatal error C Set/2 will do a register dump
and terminate the application, while C Set + + will do a register dump and then go back
to OS/2 and let OS/2 terminate the application. That way you will see the hard error
screen. The register dump to stdout does not appear in Presentation Manager programs,
but the hard error screen does. That was the reason for the change.

The C Exception handler will call your signal handler if you have registered one.
Signal handlers are not called for every exception -- so to be truly robust you would
register your own exception handler. Signal handlers are much simpler to write, as
the C compiler does the hard work.

Signal handling across DLL boundaries does not work, unless you have one and only one
copy of the runtime linked to your application. This is the issue of different
library environments. If a DLL has statically linked the runtime you will not
process signals registered outside that DLL. See #pragma handler in appendix E.

Appendix S - Signal Handling S-4 Technical Background

r-

-~ 5 Memory Protect Violation in a PM Program

LINEAR MEMORY

App1ication

#include < signal.h >

SEL

GDT
BASE=O

PAGE
FAULT

static void signalhandler(int iSignalNumber);

signal (SIGSEGV, signalhandler);

OFFSET

LINEAR
ADDRESS

~~ !:: PAGE ~
!:: TRANSLATION ~ -

PHYSICAL
ADDRESS

PHYSICAL MEMORY

11 signal handler prototype

11 register the signal handler for this thread

static void signalhandler(int iSignalNumber) II put up a message box
{

}

Dos Beep (1000,60);
WinMessageBox (HWND DESKTOP, hwndFrame, "Memory Protect Violation",
"Signal", ID MESSAGEBOX1, MB OK MB CUAWARNING MB MOVEABLE);

The IBM C Set/ 2 Applications Libraries install the C exception handler Exception for each thread of
your applicat ion when you use the /Gm option and beginthread to create the new threads. If you use
the /Gm- option then the handler is installed only for thread one .

If your program, or a thread in your program, generates a memory protect violation, either by
referencing an address greater than 51 2 MB or by referencing a page which has not been assigned to
your application, then OS/2 2.1 will call the thread specific exception handler.

The IBM C Set/2 Exception Handler will react to a memory protect violation by (1) calling your signal
handler, (2) taking the default action SIG DFL, or (3) attempt to ignore the action SIG IGN. The
library maintains a signal table for each thread, for each of 10 signals. The contents of the table
can be (1) the address of your handler, (2) SIG DFL, or (3) SIG IGN. In the case of a memory protect
violation the default and ignore case will cause -your application - to be terminated .

In the example above, which is from \OS22LABS\DEMOS\MEMDEM\MEMDEM.C, a Presentation Manager
program registers a handler which will put up a message box when there is a memory protection
violation. This will prevent the application from just "disappearing" from the screen . Since the

-, handler returns, the application is terminated when the message box is dismissed. This message box
is not necessary when using the C Set + + Library as the C Set + + Exception handler returns to OS/2
and OS/2 will put up the hard error screen

App endix S - Signal Handl ing S-5 Memo r y Pro t ec t ion Vi olat ion

6 Vectoring of the Exception

INTERRUPT
VECTOR
TllBLE

p.···.·.·.··.··.··.···············
MEMORY

PROTECT
FAULT

386
486
CPU

YES IBM C SET/2 >---- _Exception

SIG IGN
SIG)FL

TERMINATE
APPLICATION

WITH DUMP

RETURN

TERMINATE
APPLICATION

WITH DUMP

Handler

Application
Signal
Handler

_endthread()

longjrop

The hardware generates an exception (an interrupt, if you will) if you exceed the GOT
limit or reference a not-present page, or try to write to a read-only page. The
interrupt vectors through the interrupt vector table (technically the interrupt
descriptor table) and ends up in OS/2. The operating system cures the problem if it
occurs because one of your pages was swapped out. Else, the operating system will
call the thread's exception handler if one has been registered.

The IBM C Set/2 Library registers its Exception handler. That handler has a signal
table for each of 1 0 signals for each thread. If the Exception handler sees a
memory protect violation, it then converts it into SIGSEGV. The state of the signal
table can be SIG IGN, SIG DFL, or "your handler". Exception can not ignore a
real memory protect violatlOn, so the ignore and default cases cause your process to
be terminated: the C Set/2 Exception handler does a DosExit (EXIT PROCESS ... with
a register dump; the C Set + + Exception handler does the register dump and returns
to the OS/2 Kernel.

If you have registered a signal handler, your handler is called. If your handler
returns, Exception takes the SIG IGN case (which for a memory protect terminates the
process)~ If your handler does a fongjmp or it terminates the offending thread (and
in either case does not return), your process survives.

Appendix S - Signal Handling S- 6 Memory Protection Violation

7 General Protection and Page Faults

LOGICAL ADDRESS (16:32 pointer)
i+---16 bits ----M~l•4------32 bits -------.i

SELECTOR OFFSET MEMORY
0

LIMIT 15-0

BASE 15-0 LINEAR ADDRESS
BASE ACCESS

23-16 RIGHTS
BASE GBOA LIM 31-24

i.14----,--32 bits _____,

DIR PAGE OFFSET LIMIT 15-0

BASE 15-0

BASE ACCESS
23-16 RIGHTS

BASE GBOA LIM 31-24 PHYSICAL ADDRESS
PAGE TRANSLATION

LIMIT 15-0

BASE 15-0

BASE ACCESS NEW PAGE
23-16 RIGHTS

BASE GBOA LIM
31-24

i.14---20 bits----+!

4 GB
DESCRIPTOR TABLE ADDRESS 32 BITS

NOTES:

When the application is running, OS/2 is not. Only the hardware is minding the store. If the application
makes a memory reference beyond the GDT limit, it will not get past the first "+" -- there will be a
general protection fault. If the application accesses a not present page or attempts to write to a
read-only page, there will be a page fault -- it will not get past the second "+ ".

To review, when a thread accesses invalid memory, the CPU will generate a page fault if the accccess
is within the GDT limit . A general protection fault is generated if the reference is above the GDT
limit (448 MB).

If a page fault occurs, OS /2 checks to see that the memory was allocated to the application and the present
bit is clear. If so, the memory is loaded from disk and the present bit is set. Otherwise, if an
exception handler has been registered, OS/2 raises an exception in the context of the thread.

If a general protection fault occurs, and an exception handler has been registered, then OS/2 will raise
the exception handler in the context of the thread.

Appendix S - Signal Handling S-7 Memory Protection Vi o lation

C Functions for Lab 4 Part A

In the advanced class workshop, labs 4A and 48 let you practice with signal handling.
These are the functions we use in those labs:

int raise(int);

#define SI GILL 1 < - illegal instruction
#define SIGSEGV 2 < - invalid access to memory
#define SIGFPE 3 < - floating point exception
#define SIGTERM 4 <- OS/2 SIGTERM (killprocess) signal
#define SIGABRT 5 <- abort () signal
#define SIG INT 6 <- OS / 2 SIGINTR signal
#define SIGUSRl 7 <- user exception
#define SIGUSR2 8 <- user exception
#define SIGUSR3 9 <- user exception
#define SIGBREAK 10 <- OS /2 Ctrl-Break sequence

sends the signal specified to the current thread. The
return value is 0 if successful, nonzero if unsuccessful .

signal (SIGBREAK , SIG DFL)
signal (SIGBREAK, SIG-IGN)
signal (SIGBREAK, hanoler)

<- reset to default handler
<- ignore the signal
<- register handler

Allows a process to choose one of several ways to handle
an interrupt signal from the Operating System or from the
raise function.

The action taken depends on the value of the func:

#define SIG_ERR ((void (*)(int))-1) <-bad return code

int atexit (handler) ; - > 0 = successful

records a function for the system to call at normal
program termination. You may register up to 32 functions.

void abort (vo id) ;

similar to exit(), except that exit flushes buffers and
closes open files before ending a program. Calls to abort
raise the SIGABRT signal.

void exit (int status);

#define EXIT SUCCESS 0
#define EXIT-FAILURE 8

< - pass in EXIT value 0-255

returns control to the host environment from the program.
exit first calls all functions that the atexit function
has placed in a sequential list o f functions, in reverse
order.

APIRET DosError (ULONG error); <- FERR_ flags

FERR DISABLEHARDERR
FERR-ENABLEHARDERR
FERR-ENABLEEXCEPTION
FERR-DISABLEEXCEPTION

OL <-disable hard error popups
lL <-enable hard error popups
OL <-enable exception popups
2L <-disable exception popups

DosError disables or enables end-user notification of
hard errors, program exceptions, or untrapped, numeric
processor exceptions. If DosError is not issued, user
notification for hard errors and exceptions is enabled.

Appendix S - Signal Handling S-8 Memory Protection Violation

..........

,--.....

~ Technical Note on Signals

~ The default handling of signals is described in the IBM C Set/2 Language Manual:

Signal Source Default Action Ignore

SIGABRT Abnormal termination signal Terminate the program Ignore
sent by abort function with exit code 3.

SIGBREAK CTRL+BREAK signal Terminate the program Ignore
wi th exit code 99.

SIGFPE Floating-Point Exceptions Terminate the program Terminate
that are not masked, such as wi th exit code 99. A
overflow, division by zero, machine-state dump is
and inv alid operation provided.

SI GILL Disallowed Instruction Terminate the program Terminate
with exit code 99. A
machine-state dump is
provided unless raise
was used to report the
signal.

SIG INT CTRL+C signal. Terminate the program Ignore
with exit code 99.

SIGSEGV Access of memory not valid . Terminate the program Terminate
with exit code 99. A
machine-state dump is
provided.

SIGTERM Program termination signal Terminate the program Ignore
sent by the user . wi th exit code 99.

SIGUSRl

SIGUSR2 User-defined signals Ignore Ignore

SIGUSR3

NOTE: HANDLE is always the same as IGNORE, if you return from the handler.

32-Bit Signals are a creature of the C Set/2 Compiler, and should not be confused
with the OS/2 1.X Signaling Capability. The FLAGA, FLAGS, FLAGC form of Interprocess
Communication which existed in 1 .X does not exist in 2.0.

When the OS/2 2.1 operating system detects something amiss, such as a memory access
violation, a math processor error, or a need to terminate an application due to
CTRL + C, CTRL +BREAK, or a DosKillProcess, it sends an exception to the process.

The chart above shows you all of the C signals. If you do not register a signal
handler, and do not set the signal to SIG IGN, the default action is taken.

SIGBREAK and SIGINT only occur for the main thread and need not even be registered on
other threads (save some code). These signals come from the asynchronous exceptions
generated by CTRL + C and CTRL +BREAK, or from DosSendSignalException.

Appendix S - Signal Handling S-9 Technical Note on Signals

Signals and Exceptions on a Per Thread Basis

RULE: Each thread has its own signal handler table. A signal is a creature of the C
compiler generated by the raise() function. The signal occurs in the context of
the thread in which the raise was executed. The compiler does this, in part, because
in 32-Bit OS/2 the operating system raises exceptions on a per-thread basis.

Mapping Between System Exceptions and C Signals

Some exceptions from the operating system do not have corresponding signals from
the library. On the other hand, SIGABRT comes from the library function abort and
does not map into a system exception.

Stack exceptions are not handled by the C library -- they are not converted into
signals. The theory behind that is that if you get a stack exception, your C program
is already "hosed". However, the option to terminate the offending thread and
countine the program argues in favor of future handling of stack exceptions by the
library.

Signal Handlers - Registering and Re-Registering

When you start your application, all signals are set to SIG DFL (default action). To
specify specific handling for a signal, use the signal() call as follows:

signal (SIGBREAK, SIG IGN)
signal (SIGABORT, handler)
signal (SIGILL, SIG DFL)

< - ignore SIG BREAK
<- register procedure "handler"
< - default handling

RULE: When you register a signal handler, you are registering it for one specific
signal for one specific thread. If you want to register a handler for all threads
for all signals, you must call it 10 times (ten signals) inside of each thread! We
will do that in lab.

Processing a Signal

If you have registered a signal handler, the handler is called with the signal as a
parameter, in the context of the thread where the signal occurred. Thus one handler
can handle all signals for all threads, running in the context of the thread in which
the signal occurred.

ANSI requires that the handler automatically be de-registered when a signal occurs.
RULE: Inside the handler, re-register the handler for that signal (for that thread).

Why Use Signals - Why Not Exceptions

Signals are easier to use and are portable to other operating environments.

Appendix S - Signal Handling S-10 Technical Note on Signals

OS/2 2.1 for Software Developers

Appendix STAC

Using Stacker for OS/2

by Charles R. Chernac k

OS / 2 2.1 for Developers STAC-1 Using Stacker for OS / 2

2 Table of Contents

Appendix STAC - Using Stacker f or OS/2

Why a Chapter on Stacker

Installation of DOS and Stacker
Repartition your Hard Disk using FDISK
Stack Drive E .
Modify CONFIG.SYS, AUTOEXEC.BAT

Install OS / 2 and Enable Stacker . .

STAC-1

STAC-3

STAC-4
STAC-4
STAC-5
STAC- 6

STAC-7

NOTE: This Appendix represents personal opinion of
the Author and does not represent views held by IBM

Using Stacker for OS / 2 STAC -2 Table of Contents 04/ 12 /9 4

Why a Chapter on Stacker

I travel and teach for a living. I carry two OS/2 systems with me -- one using
a notebook and one using a sub-notebook. Disk space is very important to me and
decided to try stacker. If you follow their installation instructions, you end up with
a system which I found to be hard to use and potentially unstable. That ' s because (1)
they boot off the stacked disk, and (2) I am always changing my config.sys and stacker
does things when you do that. Also, some applications seem to be sensitive to running
in a stacked partition. None of this is hard fact, just opinion and experience. So I
figured out how to install stacker to make it pretty bullet proof.

The assumption I make is that you have a system with 120 - 200 MB of hard disk, a fast
386 or 486, and 8 - 16 MB of RAM . You use various communications packages and
perhaps various modems including perhaps a PCMCIA modem.

STAC tells you to make a special diskette to boot a stacked copy of OS/2, and they go
through serious issues on how to update or inst all OS/2 using stacker. None of this is
necessary .

When you are done with this process, you will have an OS/2 system with much more
disk space, and you will be able to reliably boot and you will be able to stack floppy
diskettes (PC DOS only). And , unlike the rather confusing environment you get when
you follow the STAC installation instructions, you will have a simple and
understandable environment.

RULE 1: NEVER depend on STACKER to boot. This does not mean that it
does not work, or that there are flaws in their product . Just do not do
it.

REASON: If something minor happens to your stacked drive, you may not be
able to boot from the stacked drive . But if you can boot without using the
stacked drive, it is highly likely that you can repair the stacked drive and
not lose data. You do this with the CHECK program.

RULE 2: Always put BOOT MANAGER and PC DOS 6.1 and OS/2 2.1 on the
system. That does not mean that you cannot use other versions of DOS,
but I happen to like PC DOS 6.1.

REASON: You now have two independent ways of booting. Each way can access
the stacked drive. This is an insurance policy. I also like to use the DOS
package INTERLNK/INTERSVR to copy files between systems.

RULE 3: Use FAT partitions for OS/2 and PC DOS 6 .1. That is not to say
that HPFS does not work, but it allows you to tune your OS/2 system when
you have booted DOS.

REASON: You can edit and use the DOS partition files from OS/2 and vice
versa. You can access at all times the DOS CONFIG.SYS and OS/2 CONFIG .SYS,
the DOS AUTOEXEC .BAT and the OS/2 AUTOEXEC .BAT. These DOS files will be in
C:\ and the OS/2 files will be in D:\

The installation procedure follows.

Using Stacker for OS / 2 STAC-3 I ntroduc t ion

Repartition your Hard Disk using FDISK

Use INTERLNK/INTERSVR from DOS, or connect an external SCSI (perhaps using a
Trantor interface) and copy everything of value to another system or to an external
SCSI. These installation instructions are not for people short on hardware.

Create a 15-20 MB C partition for DOS. We will use this for a minimal DOS (we can ,...-.
keep most of DOS stacked), and for SWAPPER.DAT. We do not want SWAPPER.DAT
to be on a stacked disk, and it is good to keep it out of the way of OS/2.
Your SWAPPER.DAT might start out at 2 MB, but typically it will need to grow
upwards of 10 MB.

Create a 20-25 MB extended DOS partition (D drive) for OS/2 2.1 . I prefer 20 MB as
that is the smallest partition you can sneak by the OS/2 installation program, but the
installation program has a bit of trouble here and 25 MB would likely make it easier.
But that extra 5 MB wastes 10 MB of potential stacked disk space. So I used 20 MB.

Create a large extended DOS partition (E drive) using all remaining storage on your
hard disk, but for one free track which we will reserve for boot manager.

Install PC DOS 6 . 1 on Drive C

Boot a DOS 6.1 floppy and FORMAT C: /S. Label C: as DRIVE C as you will end up with
lots of drives and it is nice to really know which one you are on. Format E: and label
it as DRIVE E. ,...-.

Make a subdirectory C:\DOS and put the following files in it. The rest of DOS can be
stacked. If you have any other .SYS files that you use (or any other files you need
to boot DOS, put them in here or someplace on drive c.

You will note that I do not have the DOSSHELL in here. That is because I do not use it .
But for your system, put in whatever you need to boot DOS.

Using Stacker for OS / 2 STAC-4 Ins t a lla ti on o f DOS and STACKER

Make a subdirectory C:\STACKER and put the files below into it from your STACKER
installation diskette. We will not use them all, but they are small.

CHECK
CREATE
FATMGR
REPORT
SDEFRAG
SDEFRAG2
SDIR
SSWAP
SSWAP
SSWAP2
STACKER
STACKER
SWAPMAP

EXE
COM
EXE
EXE
COM
EXE
EXE
COM
CFG
SYS
SYS
COM
EXE

<- used to verify and repair the stacked disk
<- used to create stacked drives and diskettes
<- used to tell OS / 2 how much space is available
<- used to report the status of the stacked disk
<- used to defragment and optimize the stacked disk
<- OS / 2 version of defragment / optimize
<- used to show stacking of a directory
<- used to rearrange drive letters under DOS

<- used to rearrange drive letters under OS/2
<- OS/2 stacker driver
<- DOS stacker driver
<- lists all drives and explains which are swapped

NOTE: You need to install stacker using their standard installation procedure to get some of these files unpacked. You cannot just copy them all from the stacker installation diskette.

Create a subdirectory C:\UTIL or whatever, and put your favorite text editor
and other programs which are fundamental to your use of your computer, such as
PKUNZIP2 and PKZIP2.

If you are using the TRANTOR SCSI interface, make C:\TSCSI and put in the files
your normally use:

MA348 SYS
TSCSI SYS

Stack Drive E
Run CREATE E: which will stack drive E: You will not be able to used this disk until

you modify your config.sys and reboot. Note that stacker.com does not need to be in
your config.sys for you to create a stacked partition.

Using Stacker for OS / 2 STAC-5 Installation of DOS and STACKER

Modify CONFIG.SYS, AUTOEXEC.BAT, Reboot

Use your editor to make the following CONFIG.SYS and AUTOEXEC.BAT on
DRIVE C:

AUTOEXEC.BAT

path c: \ dos;e: \ dos;e: \ util;c: \ util;c: \ stacker
mouse
dos key
check e: / WP / B
swapmap

CONFIG.SYS

DEVICE= C: \ DOS \ HIMEM.SYS
DOS=HIGH,UMB
DEVICE=C: \ DOS \ SETVER.EXE
DEVICE=C: \ DOS \ EMM386.EXE X=DOOO-DFFF

device = \ stacker \ stacker.com / EMS e: \ stacvol.dsk A:
device=c: \ stacker \ sswap.com e: \ stacvol.dsk

FILES=30
BUFFERS=lO
FCBS=4,0
REM DEVICE=C: \ DOS \ RAMDRIVE.SYS

rem this line for TRANTOR 34 8
REM Device=C: \ TSCSI \ MA348.SYS

4096 512 256 / e

rem this line for EXTERNAL SCSI HARD DISK
REM Device=C: \ TSCSI \ TSCSI.SYS

STACKS=9,256
SHELL=C: \ DOS \ COMMAND.COM C: \ DOS / P / E:240
REM DEVICE=C: \ DOS \ INTERLNK.EXE / drives:6

The A: hanging off the end of stacker.com allows you to access a stacked floppy
from DOS. You use create a: to stack your floppy. It's a great way to backup
files -- no one else will know how to read the floppy!

You should now have a functional bootable DOS system with a large stacked E drive.
You can use REPORT E: to see what your E drive looks like. Copy everything you
own onto this large drive. Try report E:. Consider using sdefrag /GL to optimize
the disk and to adjust your predicted compression ratio. This will take 30-60
minutes on a 150/300 MB partition. Remember to put all of the DOS components you do
not need to boot DOS into E:\DOS.

Make a directory C:\OS2\SYSTEM. We will use that for the OS/2 SWAPPER.DAT.

Using Stacker for OS / 2 STAC- 6 Installation o f DOS and STACKER

,,.--.._

Install OS/2 on Drive D:
You should now install OS/2 2.1 on Drive D:, and also install Boot Manager on that
free cylinder. The fact that Drive C is DOS and drive E is stacked has nothing to do
with the install process. Do a minimum bootable installation, rather than a custom
installation, as there seems to be some problems with custom installation on a 20 MB
partition.

You will have to use the FDISK built into Install to make the Boot Manager partition
bootable and drive D: installable. Drive D needs to be formatted as a FAT partition.

During the install you can select software options and select C:\OS2\SYSTEM for your
swappath. It may take multiple passes to install OS/2 2.1 in a 20 MB partition -- I
suggest that you install a minimum system at first (select NO options) and then
do another pass to add what you want -- after you change the SWAPPATH in
CONFIG.SYS.

After the install Boot DOS. Edit D:\CONFIG.SYS to make sure that the SWAPPATH
statement says SWAPPATH = C:\OS2\SYSTEM . If there is a file
D:\OS2\SYSTEM\SWAPPER.DAT remove the file while in DOS.

Now let's see if we can reference the stacked disk from OS/2. Note that nothing
required to boot OS/2 is in drive E -- it is all on drive D. Use your text editor
to add the following statements to D:\CONFIG.SYS (near the end):

device = c:\stacker\stacker.sys e:\stacvol.dsk
device = c:\stacker\sswap2.sys e:\stacvol.dsk
run = c:\stacker\fatmgr.exe

Reboot OS/2 using boot manager. You should be able to access your files on Drive E:
You can now do a selective install under SYSTEM SETUP and put WINOS2 on Drive E:, or
you can install Microsoft Windows on Drive E:. Put your toolkit, compiler, etc on
drive E. However, if you are using the execution trace analyzer, you need to have the
.SYS file on drive C or D (on a drive which is not stacked):

DEVICE= D:\IBMCPP\SYS\DDE4XTRA.SYS

So copy DDE4XTRA.SYS from Drive E: and put it someplace on C or D (I make a directory
which has the same pathname as used in E: and just put the .SYS file there).

Everything should now be working . You can boot either DOS or OS/2 regardless of the
state of the stacker disk. You have enough room on C or D to put applications which
seem to be "stacker sensitive" on a non-stacked disk.

I recommend moving directories not important in the boot process (such as \OS2\HELP)
to drive E (and making subsequent changes to D: \OS2\CONFIG .SYS). This frees up
valuable uncompressed space. Also, boot DOS and run PC DOS 6.1 DEFRAG on drive C
and D (your FAT partitions) now and then. Boot DOS and run SDEFRAG on drive E
once in a while. Be careful not to run DEFRAG on your stacked disk -- it does
not cause data loss but it is a bad idea.

You will find that if you keep many drawings (.BMP, .PCX, etc) zipped to save disk
space and that you have to unzip them to use them, that on a stacked drive they might
actually take less physical space unzipped!

Us ing Stacker for OS / 2 STAC - 7 Insta ll OS/2 and Ena ble Stacker

8 Notes

,-

Using Stacker for OS / 2 STAC-8 Notes

OS/2 2. 1 for Software Developers

Appendix T

Thunking

OS/2 2.1 for Developers T-1

by Charles R. Chernack

Thunking

2 Table of Contents

Appendix T - Thunking . . .

Thunking - Calling Between 32 and 16 Bit Code
Operation of 16-Bit OS/2
Shared Objects in 16-Bit OS / 2
LDT Tiling VS GDT Enabling: Both = 512 MB
Tiling the Local Descriptor Table . . .
16-Bit Memory Demonstration (LDT in 32-Bit OS/2)
16-Bit Processes - Shared Objects in OS / 2 2.1
The Segl6 qualifier
#pragma segl6 - do not cross 64K boundary
Calling 16-Bit API - Old Style In-Line Thunk

Compiler Thunking Pathways
Calling 16-Bit API from 32-Bit C

EDCThunkProlog, DosFlatToSel, DosSelToFlat
EDCThunkProlog and #pragma stackl6()

Calling 16-Bit DLL from 16-Bit C
Calling 16-Bit DLL from 32-Bit C
16-Bit Callback to 16-Bit Main
16-Bit Callback to 32-Bit Main

LDT allocation in 16-bit Program
LDT allocation in 32-bit Program

Answers to Questions

T-1

T-3
T-4
T-5
T-6
T-7
T-8
T-10
T-11
T-12
T-13

T-14
T-16
T-18
T-19
T-20
T-21
T-22
T-23

T-24
T-26

T-

Appendix T - Thunking T-2 Table of Contents 02/10 / 94

Thunking - Calling Between 32 and 16 Bit Code

Operating System Thunks

IBM C Set/2 Compiler Thunks

Calling 16-Bit OS/2 1 .X API
Calling 16-bit Code in 32-Bit Exe
Calling 16-bit DLL from 32-Bit Exe
16-Bit to 32-Bit Callbacks
Thunking of Pointers Seg 1 6
Preventing Objects From Crossing 64K Boundaries
Specifying the Stack Size for the 1 6-Bit Code

Thunking Layers

Thunking refers to calling 16-bit code from 32-bit code, or vice versa. In the Intel
chip literature, this is called mixed mode programming. The 80386 and 80486 have the
ability to define, in the code segment descriptors, with a single bit, whether or not
the code contained in a specific code segment is made up of 32-bit code. Bottom line,
the 386 and 486 can "understand" whether the code in any particular code segment is
16 or 32 bits based on the descriptor, and will properly interpret 16 and 32 bit
binary codes.

Our job, then, is to understand how we can use both 16 and 32 bit code in the same
system. We wish to share memory, semaphores, etc. between 16 and 32 bit processes.
We may wish to update a set of 16 bit processes by replacing some with 32-bit
processes. We may wish to use a DLL we wrote for a 16-bit application with a 32-bit
application. We may wish to provide a thunking layer so that our 32-bit customer may
use our old 16-bit DLL transparently.

OPERATING SYSTEM THUNKS are required because part of OS/2 2.0 is still 16-bit code.
How OS/2 provides 32-bit services to us via 16-bit code is not our problem -- that's an
internals issue.

IBM C SET COMPILER THUNKS: The 32-bit compiler has facilities for interconnect to
16-bit API, 16-bit DLLs, and callback from a 16-bit DLL to a 32-bit application. These
facilities are built on the ability of the compiler to "package" up a call in the way a
16-bit API or procedure wants to receive the parameters -- using far16 linkage. The
compiler can also carry pointers as 16: 16 pointers or as 0:32 pointers, and thunk
across the assignment operator. The compiler can insure that adequate (or at least
user specified amounts of) stack are available in the current 64K of the stack frame
when a 16 bit function is called.

The operating system provides Tiled LDTs and simultaneous allocation of memory objects
in the 32-bit address space and 16-bit address space, allowing easy coexistence of 16
and 32 bit code in the same process.

Appe ndix T - Thunking T- 3 Introduc tion to Thunking

7H
OH

0
9H

1
FH

10H

2
17H

lFH 19H
3

20H

Operation of 16-Bit OS/2

DosAllocSeg (0, &sel, SEG_NONSHARED);

pchData =MAKE~ (sel, 0);

B02B6 DESCRIPTOR

RESERVED 80386

~
AR BVTE 23 - 16

BASE 15-0

Llf1IT (16 BITS>

16 MB
RAM

64K SEGMENT

29H

30H 37H I- 13 BITS -I 8 , 192 Oescrip1:ors

lnlRPL I
OFFSET

GOT LDT

DESCRIPTOR TABLES 16MB HaxiMUM Si ze : OK ... 8 = 64K

Although you can use the 16 bit API without understanding the mechanics, a basic
understanding of the 16-bit mechanics is helpful. In 16-bit OS/2 (and when 16-bit
applications run in 32-bit OS/2), application code and data is supported via memory
descriptors in the LDT (local descriptor table). These descriptors are created by OS/2
and are understood by the Intel hardware. A descriptor contains the base address and
size (LIMIT) of a block of memory that this application can use. A descriptor table is
like an array of structures. Each structure has a base, a limit, and an access rights
byte. The Intel hardware prevents an application for addressing memory blocks which are
not described by its descriptor table. For process isolation, each application has its
own descriptor table. They are "local" to the application.

In 16-bit OS/2 a memory address is a SEL:OFFSET pointer made using macro MAKEP. User
segments are in LDTs (local descriptor tables) which are specific to each process. LDT
entry 4 would have an "index" field of 4, a Tl (table indicator) bit of 1 (LDT), and a
RPL (privilege level) of 3 (ring 3). The 16: 16 pointer to the start of the segment
would then be 27H:O.

Ox

27H:O o o o o o o o o o o i o oi1i1 i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The left-most 13 bits of the selector index into the descriptor table. The next bit is
0 for the GOT (global descriptor table) or 1 for the LDT.

Appendix T - Thunking T-4 The 16-Bi t Environment

,.....,

,--

Shared Objects in 16-Bit OS/2

DosAllocSeg (0, &sel, SEG GIVEABLE);

PROCESS 11
?Hr---~

FH
0

1
17H,....,,.~,.....,

::::::$.:::H
1FH

3
27H 1-----<

PROCESS 12
7H ,-----,

FH
0

1
17H,.....,.~,.....,

: :: :-.~:::::::
1FH

3
27H 1-----<

PROCESS 13
7H ,----~

FH
0

1
17H ~,..,.,.,.-,.,-l

::::::$.:::H
1FH

3
27H >------<

2FH PTIBTI
3 7 H L1iliiliill

Shared objects are allocated in the DISJOINT space of the LDTs in OS/2 1 .X . This
allows the LDTs for small processes to remain small, in that both shared and private
objects start from the low end of the LDT.

Allocating a shared object reserves an entry in the disjoint space of each processes
LDT, but the LDT entry is not activated until the shared memory is enabled by
DosGiveSeg, DosGetSeg, etc.

In 16-bit OS/2 we wish to keep the LDTs small. This is done to save physical
memory. Since each shared object must exist at exactly the same LDT ordinal in
the context of each process which can attach the object. If one process has a large
number of private objects, and there were no disjoint space, then the first
available ordinal for a shared object would be high in the LDT. This would cause
the LDT of each application gaining access to that object to be expanded to include
that ordinal. The disjoint space -- reserving every few ordinal for shared objects
-- solves that problem and in architected into 16-bit OS/2.

When 16-bit applications run in a 32-bit OS/2 environment, their LDTs are organized
differently by the system: shared objects start high in the LDT and work toward the
center; private objects start low in the LDT and work toward the center.

Appendix T - Thunking T-5 The 1 6 -Bit Environment

LDT Tiling vs GOT Enabling: Both - 512 MB

7H

0
FH

1
1 7H

2
1FH

3 512
27H MB 5 3H

2 FH 5BH

~
LDT GOT

LJ
18192 * 64K = 512 MBI

Every 32-bit application references its 512 MB of flat address space using exactly
the same two GOT entries: Ox53 and Ox5B. These GOT entries have a base of 0 and a
limit of 512 MB (or 448 MB).

32-bit applications reference memory using a 16:32 pointer. The operating system
uses two GOT entries to make up a CODE and a STACK/DATA/EXTRA segment
descriptor. All 32-bit applications can share those two GOT entries. 5BH:0001 OOOOH
is the starting address CS :EIP. Notice that uses GOT entry 11. The Tl bit is 0,
specifying GOT. And the privilege level is ring 3:

01 01 s I

SBH: O 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1

0

Sixteen bit applications work off a tiled LDT: each LDT entry, if enabled, points to
an address which is equal to 64K times the entry number. Each application has its
own LDT. The value in each BASE field can be predicted. The present bit and the
LIMIT of each entry is process specific .

Bottom line, using different mechanisms, 16 and 32-bit applications running under
32-bit OS/2 can reference 512 MB (or 448 MB) of virtual address space. Shared objects
in this address space may be shared between 16 and 32-bit processes. 16-bit DLLs
running in the context of a 32-bit process may also share address space and access
private memory objects which belong to the 32-bit application.

App e ndix T - Thu nking T- 6 512 MB f rom LDT or GDT

,....--..,

,-.,

Tiling the Local Descriptor Table

7H

0
FH

1
17H

2
1FH

3
27H

2FH

'

LDT

EXERCISES:

BtliSE=0
LIMIT=64K

BASE=64K
LIMIT=64K

BtliSE=128K
LIMIT=64K

BtliSE=192K
LIMIT=64K

'

64K

64K

64K

64K

'

LJ
512
MB

18192 * 64K = 512 Mel

1] Explain why selector Ox001 F represents LDT ordinal #3.

2] Convert 16: 16 address Ox1 F:Ox005 to a 32-Bit Linear Address.

3] Convert Linear Address Ox10050 to a 16: 16 Address.

If the LDT were shared between all applications and page translation were the sole
form of memory management for 16-bit applications running under 32-bit OS/2, then
the limit would be 64K in each LDT entry. However, as we will see, there is a
separate LDT for each 16-bit application and the LIMIT of each entry is determined by
the application (just as in 16-bit OS/2). The LIMIT could be 64K but need not be.

The BASE of each successive LDT entry is 64K greater than the previous. Since each
64K boundary represents Ox 10000, ordinal 1 is Ox 10000, ordinal 2 is Ox20000, etc.
OS/2 2.0 loads applications at Ox 10000 (which is why we say /BASE:Ox 10000 using
LINK386).

Generally the GOT limit is 448 MB while running the application, as the 448 - 512 MB
region is reserved for the protected DLL data area. Thus 1000 LDT entries (64K *
1000 = 64 MB) are not used for normal process objects.

If you realize that each line on the chart represents Ox 10000, then the answers to
the questions are [1 l convert to binary and strip the right three bits -- we did this
before; [2] 30000 + 5 = Ox30005; [3] 10000 = F so OxF:50. If you got these right,
you can thunk addresses!

Appe ndix T - Thunking T -7 Tiling the 1 6 -Bit LDT OS /2 2 .1

16-Bit Memory Demonstration

The demonstration program on the next page was written to answer a simple question:
when 32-bit OS/2 hosts a 16-bit application does OS/2 create one LDT per application or
does it share an LDT for all applications.

The question is interesting because it increases our understanding of this implementation
of OS/2. Certain programming techniques and observations which we make once we
understand the answer to this question will let us intuitively write better code
since we know what is happening. But when writing this "better code" we still
follow the rules. For example, we know that if you do a DosAllocMem of 200 bytes in
OS/2 2.1, that you really get 4K. We would not use that information to provide 4K
of storage -- as that might change with a different hardware platform. But we
would use that information to understand a fault at the 4K boundary.

If there were one LDT in 32-bit OS/2 which was shared by all 16-bit applications, then
when a 16-bit application did a DosAllocSeg of 200 bytes, it would be able to reference
4K bytes. That would be because the LIMIT field in each entry of the LDT would be set
to OxFFFF and memory would be managed with page translation. That is exactly what
happens for 32-bit applications: the first 512 MB (448 MB) is wide open in that the GOT
entry has a base of 0 and a limit of 512 MB (448 MB). The same strategy could be used
by 32-bit OS/2 for 16-bit applications: make the one LDT wide open and manage the
memory soley with page translation. That is not the way it is done. Each 16-bit
application has its own LDT in OS/2 2.1 .

To prove this we run the program on the next page in a 16-bit environment and in a
32-bit environment. The program allocates two 200 byte segments -- a shared segment
and a private segment. The shared segment is allocated just so that we can look at its
selector. In the case of the private segment, we call an assembler subroutine
usSegmentSize (source code in the directory) which returns the LIMIT of the LDT
entry. If the limit is OxFFFF we would guess that OS/2 2.1 only needs one LDT for all
16-bit applications. If the limit is 199 then the LDT has been customized for this
particular memory allocation and is thus process specific.

In fact, the limit is 199. Also, if we drive a pointer through the pr'ivate memory we
get a fault at 200 rather than at 4096. Again, this shows that we are hitting the LDT
descriptor limit. Had this been a 32-bit application, we would have got the fault at
4096 as we would have allocated one page.

In fact, there is one page of backing store (4096 bytes on the Intel chip) but you can
only access 200 bytes of it.

Note that when we run this application in 16-bit OS/2, the selectors are low in the
LDT. That's because shared objects are in the disjoint space of the 16-bit OS/2 LDT.
When we run this application in 32-bit OS/2, the selectors are at opposite ends of
memory be~ause private objects start in low memory and shared objects start in high
memory, and they both work towards the center. This is sparse allocation of the
address space.

Appe ndix T - Thunking T- 8 1 6-Bit Memory Demonstration 1 / 1

----- 16-Bit Memory Demonstration

II demonstrates segment limit of 16-bit program using LSL instruction
II * * * * * * OSl2 Version 1.x * * * * * * in \OS22LABS\DEMOS\MEMORY

#define INCL BASE
#include < os2.h >
#include < stdio.h >
#include < stdlib.h >

#define STDOUT

11 internal function prototypes

void terminate (PCHAR pszMsg, USHORT re);

11 external function prototypes

{

extern USHORT APIENTRY usSegmentSize (SEL sel);

void main (void)

USHORT re;
USHORT i;
PCH pch;
SEL sel;

re = DosAllocSeg (200, &sel, SEG GIVEABLE);
if (re) terminate (" DosAllocSeg Failure", re);
printf ("Shared Segment at %4X \n", sel);

re = DosAllocSeg (200, &sel, SEG NONSHARED);
if (re) terminate (" DosAllocSeg Failure", re);
printf ("Private Segment at %4X \n", sel);

printf ("Segment Limit is %d \n", usSegmentSize (sel));
DosSleep(2000);
for (i = 0; i < 8000; i+ +)

pch = MAKEP (sel, i);
* pch = 'a';
printf ("%d \r", i);
}

Dos Exit (EXIT _PROCESS, 0);

PRINTOUT FROM OS/2 1 .3

Shared Segment at 47F
Private Segment at 127
Segment Limit is 199

Appe ndix T - Thunking T -9

PRINTOUT FROM OS/2 2.1

Shared Segment at 8997
Private Segment at 4F
Segment Limit is 1 99

16-Bit Memory Demonstration 2/ 2

16 Bit Processes: Shared Objects OS/2 2.1

DosAllocSeg (0, &sel, SEG GIVEABLE);

PROCESS 111 PROCESS 112 PROCESS 113
7H 7H 7H

0 0 0
FH FH FH

1 1 1
1 7H 17H 1 7H

2 2 2
1FH 1FH 1 FH

3 3 3
2 7H 2 7 H 2 7H

2 FH 2FH 2 FH

8188 IH!38 8188

9189 8189 8189

9190 8190 8190

8191 8191 8191

Each 16-bit application has its own LDT in 32-bit OS/2. By comparison, all 32-bit
applications share a few entries in the GOT. Separate LDTs allow each 16-bit memory
object to be allocated with a limit of byte granularity, as in the 1 .X environment.

LDTs are allocated as sparse objects in 32-bit OS/2. Allocating a shared object
allocates one (or more) entries at the high end of your LDT. Doing this also
reserves an entry at the high end of each processes LDT, but their LDT entries are
not activated until the shared memory is enabled by DosGiveSeg, DosGetSeg, etc.
That is, the OS/2 rules of memory sharing (give-get and named shared) are always
operative .

Why did we use disjoint space in 16-bit OS/2? Our objective was to have small LDTs.
However, in 32-bit OS/2 the LDTs are populated from both ends. Thus, the virtual
LDT is always 64K bytes long. However, due to lazy commit, the working ends of the
LDT are backed by real storage in RAM or on DASO. The unused middle of the LDT is not
backed by RAM or Disk Swap Space until the application uses those LDT entries. Thus
there is no cost in having a "big" LDT.

Of course , all of this discussion is implementat ion oriented . The 16-bit application does
not care where its segments are placed in the LDT: the LDT entries are but parking
places for segment descriptors.

Appendix T - Thunking T- 1 0 Shared Obj ects i n 16- Bit OS/2 2 . 1

The _ Seg 16 qualifier

void main (void
{

APIRET re;

PULONG pullinear;
PU LONG Seg 16 pulSelOffset;

pullinear = &re;
pulSelOffset = &re;

printf ("The linear address is %8X \n", pullinear);

printf ("The SEL:OFFSET address is %8X \n", pulSelOffset);

PRINTOUT:

The linear address is 22C48
The SEL:OFFSET address is 172C48

You know that in compiler languages, you can carry numbers as fixed point and as
floating point, and that the compiler will convert across the assignment operator. The C
Set Compiler (which only emits 32-bit code) will carry pointers as 16: 16 pointers or
0:32 (flat) pointers. The type of the pointer defaults to 0:32, but the Seg16
qualifier tells the compiler to carry the pointer as a 16: 16 ("thunked") pointer.

The Seg 16 type qualifier is used when calling 16-bit code to ensure correct mapping
of pOlnters. Seg 16 is used to create a pointer that can be addressed by a 1 6-bit
program. The pointer can also be used in a 32-bit program, because the compiler
converts it to 32-bit form. The _ Seg 16 qualifier can only be used with pointers.

Pointers shared between 32-bit and 16-bit code may be qualified with Seg 16. This
includes pointers passed indirectly to 16-bit code, such as pointers in structures
and pointers that are referenced by pointers passed directly to 16-bit code.
Pointers passed in function calls are automatically thunked. We'll see that in a
subsequent example.

In the example above, pullinear is a 0:32 pointer and pulSelOffset is a 16: 16
pointer. We take the address of variable re. We then print the address is a 0:32
address and as a 16: 16 address. Your knowledge of thunking should show you that flat
address Ox20000 maps to Ox17:0, so the thunk is correct.

Appendix T - Thunking T-11 The Seg16 qualifier

#pragma seg 16 - do not cross 64K boundary

#define INCL BASE
#include < os2.h >

#pragma seg 16 (bArray 16a) seg 16 (bArray 16b)

II global arrays

BYTE
BYTE
BYTE
BYTE

bArray32a[60000];
bArray32b[60000];
bArray16a[60000];
bArray16b[60000];

void main (void)
{

11 may cross 64K boundary
II may cross 64K boundary
II will not cross 64K boundary
II will not cross 64K boundary

printf ("The linear address of bArray32a is % X - %X \n", bArray32a, bArray32a + 59999);
printf ("The linear address of bArray32b is % X - %X \n\n", bArray32b, bArray32b + 59999) ;
printf ("The linear address of bArray16a is % X - %X \n", bArray16a, bArray16a+59999) ;
printf ("The linear address of bArray16b is % X - % X \n", bArray16b, bArray16b + 59999);
exit(O);

PRINTOUT:

The linear addre ss o f bAr ray32a i s 40CE4 - 4 F7 43
The linear address o f bArray32b i s 4F744 - 5ElA3

The linear addres s o f bArrayl 6a i s 20000 - 2EA5F
The line ar a ddre ss o f bArr ayl 6b i s 3000 0 - 3EA5F

The #pragma seg 16 directive causes the compiler to lay out the identifier in memory
such that it does not cross a 64K boundary. The identifier can then be used in a
1 6-bit program.

>>~#~-pragma~-segl 6~ (~identifier~) ~><

You can also use the /Gt compile-time option to perform the equivalent of a #pragma
seg 16 for all variables in the program.

If #pragma seg 16 is used on variables of a structure t ype, the pointers inside that
structure are not automatically qualified as usable by 16-bit programs. If you want
the pointers in the structure qualified as such, you must declare them using the

Seg 16 type qualifier.

In the example above, arrays bArray32a and bArray32b are permitted to cross 64K
boundaries. The printout shows that bArray32b does cross a 64K boundary. The second
two arrays do not cross a 64K boundary. Thus it would be easy to pass the address of
these arrays to a 16-bit DLL. You could not pass the address of these to a 16-bit
process (from this 32-bit process) because these memory objects are private. Well, you
could pass the address, but the other process could not reference the memory .. .

App e ndix T - Thunk i ng T- 12 #pragma segl 6

,...-.

..--.,

Thunking - Calling 16-Bit API

13 BITS

void main (void) {
SEL selL, selG;
ULONG re;

rc=DosGetinfoSeg(&selG , &selL);

main
PUBLIC
PROC
PUSH
PUSH
CALL
PUSH
MOV
SUB

SUB
LEA
MOV

AND
AND
SAL
OR
OR

main

04H
01058H

EDCThunkProlog
EBP
EBP,ESP
ESP,OlOH

ESP,038H
EAX, [EBP- 04H] ; selG
ECX, EAX

EAX,O ffffOOOOH
ECX,OffffH
EAX, 03H
EAX ,0 7 0000H
EAX ,ECX

OFFSET

OFFSET

32 Bits = 4 GB
31 Bit s = 2 GB
30 Bits = 1 GB
29 Bits = 512 MB

< - Call 1 6-Bit API from 32-Bit C

This i s assembler code generated b y
an early (pre-GA) vers ion of the C
Set/2 Compiler using the / Fa option

We will discuss this call shortly

Pick up 0:32 address of parameter
Put it both EAX and ECX

isolate high word of linear address
isolate low word of linear address
shift EAX left 3 bits

and OR in 111 binary
EAX is now a 16 : 16 pointer

This is an example of a pre-GA version of C Set/2, where address thunking was
done in line. In early beta releases, ·function prototypes were provided for the 16
bit API (such as DosGetlnfoSeg). Here we see the 29-bit linear address of variable
segG converted into a 16: 16 address in preparation for calling DosGetlnfoSeg, a
16-bit API (from a 32-bit application) .

The drawing on top is a 0:32 address. It is a 29 bit address as 29 bits is 512 MB.
To thunk all we have to do is take bits 28-16 (which Ox10000 block) and put them into
the 16: 16 index field, and take bits 1 5-0 (offset within 64K) and put them into bits
15-0 of the 16: 16 address. Thus a simple bit shift and move thunks the address.

The right-most 16 bits of the linear address becomes the right most bits of the 16: 1 6
address. Those are held in ECX.

The right-most three bits in the upper word are 1-RPL. These are set to 111 binary to
specify the LDT (I= 1) and to specify ring three (RPL = 11 binary).

Appendix T - Thunking T-13 Old Style In-Line Thunk

Compiler Thunking Pathways

32-BIT EXE SHARED MEMORY
PIPE S

16-BIT EXE

16-BIT .OBJ

16-BIT DLL

ll.UEUE S
SEMAPHOR ES

SIGNAL S

Thunking La y er

16-BIT DLL 16-BIT DLL

OAT A SINGLE SHARED

Operating System Thunks

IBM C Set/2 Compiler Thunks

Calling 16-Bit OS/2 1 .X API
Calling 16-bit Code in 32-Bit Exe
Calling 16-bit DLL from 32-Bit Exe
16-Bit to 32-Bit Callbacks
Thunking of Pointers _ Seg 1 6
Preventing Objects From Crossing 64K Boundaries
Specifying the Stack Size for the 1 6-Bit Code

Thunking Layers

Internal to OS/2, if any of the 32-bit API are supported by old 16-bit code, then
thunking is required. We are not concerned with how OS/2 does that. We are concerned
with thunks we may wish to invoke ourselves using the IBM C Set Compiler.

We can use thunks to call any 16-bit API from our 32-bit application. This makes it
easy to share semaphores between a 32-bit application and a pre-existing 16-bit
application: we simply use the 16-bit semaphore API. Shared memory is no problem,
because it is easily shared between 32 and 16-bit applications .

Appe ndix T - Thunk i ng T - 14 Thunk ing Pat hways

It is possible to call 16-bit code which has been linked into a 32-bit exe, but
practically the linker cannot handle 32-bit C and 16-bit C at the same time. So that
capability is useless unless your 16-bit code is in assembler. However, since a 16-bit
DLL is separately linked (but runs in your process space), we can and will call 16-bit
code in 16-bit DLLs from our 32-bit application. You can also do a call back. That
is, a 32-bit application can pass the address of an entry point to a 16-bit DLL, and
that 16-bit DLL will be able to call back to the 32-bit application. This capability
was used in the 16-bit extended services, and it is supported by the 32-bit compiler.
We'll look at examples of a 16-16 and 16-32 callbacks.

A thunking layer is a DLL that you can provide to allow your 32-bit customer to call
a 16-bit DLL without going through the thunking steps in their code. You put the
thunking steps in a 32-bit DLL which you use to front-end a 16-bit DLL.

In the following pages, we'll look at examples of some of these pathways:

Calling 16-Bit API from 32-Bit C
EDCThunkProlog, DosFlatToSel, DosSelToFlat
EDCThunkProlog and #pragma stack16()

Calling 16-Bit DLL from 16-Bit C
Calling 16-Bit DLL from 32-Bit C
16-Bit Callback to 16-Bit Main
16-Bit Callback to 32-Bit Main

T-16
T-18
T-19
T-20
T-21
T-22
T-23

Appendix T - Thunking T-15 Thunking Pathways

Calling 16 Bit API from 32-Bit C

#define INCL BASE
#include < stdio.h >
#include < os2.h >
#include "getiseg.h"

#pragma stack 16(81 92)
#pragma linkage (DosGetlnfoSeg, far16 pascal)
USHORT DosGetlnfoSeg (PSEL selG, PSEL sell);

void main(void) {
SEL sell, selG;
PGINFOSEG pginfoseg;
ULONG re;

re= DosGetlnfoSeg(&selG,&selL);

if (re) {

}

printf("\nReturn o/od from DosGetlnfoSeg\n" ,re) ;
return;

pginfoseg = MAKEP (selG,0); II<- conversion of pointer across assignment operator

}

printf("\nThere are o/od milliseconds in the timer interval. "
"\n The day is %d, the month is %d, the year is %d. "
"\n The major version is %d, and the minor version is o/od.\n",

(ULONG)pginfoseg- > cusecTimerlnterval,
(ULONG)pginfoseg-> day,
(ULONG)pginfoseg-> month,
(ULONG)pginfoseg- >year,
(ULONG)pginfoseg- > uchMajorVersion,
(ULONG)pginfoseg-> uchMinorVersion);

The program above is in \OS22LABS\SAMPLES\INFOSEG. It illustrates calling a 16-Bit
OS/2 1 .3 API from OS/2 2.1. The two statements below are not needed in the program
in that the pointer parameters to the 16-bit API will automatically be thunked by the
compiler, and that we prefer to carry pginfoseg as 0:32.

USHORT DosGetlnfoSeg (PSEL Seg 16 selG, PSEL Seg 16 sell);
PGINFOSEG _ Seg 16 pginfoseg; - -

The key statement is the #pragma linkage (although it is preferred to put the linkage
words right in the function prototype). The pragma linkage or linkage words tell the
compiler that this is a 16-bit function which needs to be called using the pascal
(system) calling convention.

We have declared a PGINFOSEG (on the next page) in getiseg.h. We get back a selector
which is converted to a 16: 16 pointer by MAKEP and then converted across the assignment
operator to flat pointer pginfoseg.

Appendix T - Thunking T-1 6 Calling a 1 6 -Bit API

GINFOSEG structure in getiseg.h

typedef struct GINFOSEG {
ULONG time;
ULONG msecs;
UCHAR hour;
UCHAR minutes;
UCHAR seconds;
UCHAR hundredths;
USHORT timezone;
USHORT cusecTimerlnterval;
UCHAR day;
UCHAR month;
USHORT year;
UCHAR weekday;
UCHAR uchMajorVersion ;
UCHAR uchMinorVersion;
UCHAR chRevisionletter;
UCHAR sgCurrent;
UCHAR sgMax;
UCHAR cHugeShift;
UCHAR f ProtectModeOnly;
USHORT pidForeground;
UCHAR fDynamicSched;
UCHAR csecMaxWait;
USHORT cmsecMinSlice;
USHORT cmsecMaxSlice;
USHORT bootdrive;
UCHAR amecRAS[32];
UCHAR csgWindowableVioMax;
UCHAR csgPMMax;

} GINFOSEG;
typedef GINFOSEG FAR * PGINFOSEG;

OUTPUT FROM THE PROGRAM:

/* time in seconds
/* milliseconds
/* hours
/* minutes
/* seconds
/* hundredths
/* minutes from UTC
/* timer interval (units 0 .0001 seconds)
/* day
/ * month
/* year
/* day of week
/* major version number
/* minor version number
/* revision letter
/* current foreground session
/* maximum number of sessions
/* shift count for huge elements
/* protect mode only indicator
/* pid of last process in forground session
/* dynamic variation flag
/* max wait in seconds
/* minimum timeslice (milliseconds)
/* maximum timeslice (milliseconds)
/* drive from which the system was booted
/* system trace major code flag bits
/* maximum number of VIO windowable sessions
/* maximum number of pres. services sessions

There are 310 milliseconds in the timer interval.
The day is 4, the month is 3 , the year is 1 993.
The maj or version is 20, and the minor v ersion is 0.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*I
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

This structure was copied from the OS/2 1.3 Toolkit file BSEDOS.H. The structure was
included in the program on the previous page with the #include "getiseg.h". The GA
version of OS/2 2.0 did not provide a toolkit to support these 16-bit API functions, so
we took the necessary piece from the 16-bit toolkit. Compare to 32-bit DosOuerySyslnfo.

The steps to use a 16-bit API from 32-bit OS/2 2. 1 are: (1) put in a function
prototype with either linkage keywords or the #pragma linkage; (2) add any other
structure definitions required ; and (3) deal with the return information It is as
simple as that! This is supported by some "magic" in the C runtime and by
OS2286.LIB.

link386 /DE /NOi $*.obj , , ,os2386.lib os2286.lib, $ * .def;

Appendix T - Thunking T-17 Calling a 16-Bit API

EDCThunkProlog, DosFlatToSel, DosSelToFlat

PUBLIC main
main PROC

PUSH 04H
PUSH 02060H < - 16 bit stack size 8K+
CALL ~EDCThunkProlog <- insure stack not cross 64K
PUSH EBP
MOV EBP,ESP
SUB ESP,OcH

;***** 23 rc=DosGetinfoSeg(&selG,&selL);

·***** I

SUB
LEA
CALL

PUSH
LEA
CALL

ESP,038H
EAX, [EBP- 04H] ; selG
DosFlatToSel

EAX
EAX, [EBP- 02H] ; selL
DosFlatToSel

code eliminated

31 pginf oseg = MAKEP (selG,O);

XOR EAX,EAX
MOV AX I [EBP- 04H] ; selG
SAL EAX,OlOH
CALL DosSelToFlat

<- thunk 32 to 16

<- thunk 32 to 16

<- thunk 16 to 32
MOV [EBP-08H] ,EAX; pginf oseg

The machine code above generated by the compiler shows the reservation of 8 Kbytes
(2000H) of Stack for the 16 bit API (PUSH 02060H) using EDCThunkProlog. We'll look
at that on the next page. The code also shows the "modern" way of thinking addresses
-- using _DosFlatToSel and _DosSelToFlat.

DosFlatToSel and DosSelToFlat are used for address conversion (thunking) because there
are some exceptions to the conversion algorithm due to code segment packing in some
.EXE files. If you look at the machine code of this program using IPMD or Kernel
Debug, you will see that the calls to DosFlatToSel are fixup records at load time
and thus do not require extra machine-cycles!!

Note that code generated for line #31 shows the MAKEP macro as three instructions
(since the offset was 0), and then shows the call to DosSelToFlat since we are
thunking across the asignment operator. -

I am not showing you the actual trace of the call from 32 to 16. There is a routine
called EDC3216 which does the actual thunk. It is inside of the C runtime.

Appendix T - Thunking T-18 Calling a 16-Bit API

EDCThunkProlog and #pragma stack 16 ()

BEFORE

i---------~+--64K Boundary

AFTER

1
Lower Oddresses
In the Stack

+--64K Boundary

The #pragma stack 16(S 192) overrides the default stack size for the 16 bit call (which
is 4K). This tells EDCThunkProlog that 2000H + some overhead, or SK, of stack is
needed by the 16blt function. If the current stack value in ESP, - 4 for parameters,
and - Ox2060 for the 16 bit function, would cross a 64K boundary, then

EDCThunkProlog will move ESP to the far (low) side of the 64K boundary and thus the
stack for the 16 bit function will not cross a 64K boundary.

PUSH
PUSH
CALL

04H
02060H

EDCThunkProlog
< - 16 bit stack size SK+
< - insure stack not cross 64K

A 32-bit program may have lots of stack allocated, but since the 16-bit API can only
use stack within 64K boundaries, the 16-bit API might run out of stack if ESP is
approaching a Ox 10000 boundary.

In the illustration the 32-bit stack (remember ESP decrements as you use stack) is
moving lower (vertically up) and about to hit a 64K boundary. That is, if the 16-bit
API to be called uses SK of stack, its stack will cross the line. EDCThunkProlog
uses the desired target stack size and the current value in ESP to see whether or not
the 16-bit API would have a problem. If there is not sufficient "running room" in the
stack, EDCThunkProlog moves ESP lower. When the 16-bit call returns, the stack is put
back. -

The heavy shaded area represents the stack frame (parameters) for the target API, and
the lightly shaded area represents the stack required by the target API.

Appendix T - Thunking T-1 9 Reserv ing 16-Bit Stack Space

Calling a 16 Bit DLL from 16 Bit Code

#define INCL BASE
#include < os2 .h >
#include < stdio.h >

void wait_key (char * ascii, char * scan) ;

void main ()
{

char chAscii, chScan;
wait_key (&chAscii, &chScan);

II This is the MAIN program

11 for pri ntf

printf ("\n The Character Code is %2X \n The Scan Code is %2X \n",
chAscii, chScan);

Dos Exit (EXIT _PROCESS, NO ERROR);

#define INCL BASE
#include < os2.h >
#include < stdio.h >

void wait key (char * ascii, char * scan) { -

KBDKEYINFO Kbd;
HKBD hKbd = O;
USHORT re ;
printf ("\n DLL Entered \n");
re = KbdCharln (&Kbd, 10 WAIT, hKbd);
if (re) terminate ("Error in w-ait_key\n" , re);

* scan
* ascii

Kbd.chScan;
Kbd.chChar;

II This is the 16-Bit DLL

This program appears in \OS22LABS\SAMPLES\KEY16DLL. It was written and compiled
using 16-Bit OS/2. The 16-Bit EXE and 16-Bit DLL are in the directory. Run as
MAIN.EXE and hit any character on the keyboard to test.

The program calls a DLL which using 16-bit API KbdCharln to read a character. It
returns the character code and the scan code. On the next page, we will keep the
same DLL but use a 32-bit main, thus illustrating what we need to do in a 32-bit
main to call a 16-bit DLL.

Appe ndix T - Thu nking T- 20 1 6 Bit Main and 1 6 Bi t DLL

Calling a 16 Bit DLL from 32 Bit Code

#define INCL BASE
#include < stdio.h >
#include < os2.h >

#pragma stack 16(8192)
#pragma linkage (wait_ key, far16 cdecl)

II This 16 bit function resides in UTIL.DLL

void wait_key (char * ascii, char * scan);

void main ()
{

char chAscii, chScan;
wait key (&chAscii, &chScan);

\\ 32-bit MAIN

\\ specify SK of stack
\\ this pragma does it!

printf ("\n The Character Code is % 2X \n The Scan Code is % 2X \n",
chAscii, chScan);

DosExit (EXIT_PROCESS, NO_ERROR);
}

main.exe: < - THE MAKEFILE

main.obj: $ * .c $ * .def makefile
ice /c /Ss /Fa /Ti /0- /Gd- $ * .c > $*.err
type main.err

main.exe: $ *. obj $*.def
link386 /DE /NOi $ * .obj,,,util.lib os2386, $ *;
erase *.map

This program appears on the advanced class diskette as \OS22LABS\SAMPLES\KEY32DLL.
It was written and compiled using 32-Bit OS/2. The 32-Bit EXE and 16-Bit DLL are
in the directory. Run as MAIN.EXE and hit any character on the keyboard to test.
UTIL.DLL and UTIL.LIB were copied from .. \KEY16DLL.

To save space on the class diskette, files UTIL.LIB and UTIL.DLL need to be copied
from KEY16DLL to KEY32DLL. Do this by running README.CMD in
\OS22LABS\SAMPLES\KEY32DLL.

As you can see, it was effortless to call the 16-bit DLL. We just put in the
#pragma linkage specifying far 16 cdecl. We used cdecel because the code inside
of the DLL uses cdecl (not pascal) linkage. UTIL .LI B is the import library for the
DLL.

Appendix T - Thunking T-21 32 Bit Main and 16 Bit DLL

16 Bit Callback to 16 Bit Main

#define INCL BASE
... etc.

/* ---- 16 BIT Main ---- *I

typedef int (cdecl far * PCFN)();
void wait_key (PCFN pfunction);
int _loadds printit (CHAR chAscii, CHAR chScan);

void main ()
{

wait key ((PCFN) printit) ;
DosExit (EXIT_PROCESS, NO ERROR);

}

int cdecl far loadds printit (CHAR chAscii, CHAR chScan) { -

printf (11 \n The Character Code is % 2X \n The Scan Code is % 2X \n 11

,

chAscii, chScan);
return(O);
}

#define INCL BASE
. .. etc.

!* ---- 16 BIT DLL ---- *I

void wait key (PVOID x)
{

}

void (far * pfnPrintit) (CHAR chAscii, CHAR chScan);
KBDKEYINFO Kbd ; // keyboard data structure
USHORT re; // result code
printf (11 \ n DLL Entered \n 11

);

pfnPrintit = x;
re = KbdCharln (&Kbd, IO_WAIT, 0);
if (re) printf (11 KbdCharln Error \n 11

);

pfnPrintit (Kbd.chChar, Kbd.chScan);

This program appears in \OS22LABS\SAMPLES\CALLBK 16. It was written and compiled using 16-Bit OS/2. The 16-Bit EXE and 16-Bit DLL are in the directory. Run as
MAIN.EXE and hit any character on the keyboard to test.

The program passes the address of procedure printit to the DLL. The DLL does an
indirect call through a pointer with parameters to do the callback. This is the
standard technique we use in lab. The loadds was put in because the compiler
switches to the DLL's data segment when the DLL is called, and we need it to switch
back to main's data segment when we return to the main. The 16 bit qualifier
loadds also emit code to restore the caller ' s OS so the DLL would continue to run

after the return from printit.

Appe ndix T - Thunking T- 22 1 6 Bit Callbac k to 16 Bit Ma i n

16 Bit Callback to 32 Bit Main

#define INCL BASE
#include < stdio.h >
#include < os2.h >

void Far16 Cdecl wait key (void (* Far16 Cdecl)(char, char));
void =Far16 =Cdecl printlt (CHAR chAscii, CHAR chScan);

void main ()
{

wait key (printit);
DosExit (EXIT_PROCESS, NO_ERROR);

void Far16 _ Cdecl printit (CHAR chAscii, CHAR chScan)
{
printf (" \ n The Character Code is % 2X \n The Scan Code is % 2X \n",

chAscii, chScan);
return;
}

To save space on the class diskette, files UTIL.LIB and UTIL.DLL need to be copied
from KEY 16DLL to CALLBK 16. Do this by running README.CMD in
\OS22LABS\SAMPLES\CALLBK32.

This program appears in \OS22LABS\SAMPLES\CALLBK32. It was written and compiled
using 32-Bit OS/2 . The 32-Bit EXE and 16-Bit DLL are in the directory . Run as
MAIN.EXE and hit any character on the keyboard to test. UTIL.DLL and UTIL.LIB were
copied from .. \CALLBK 16.

Note the linkage words Far16 Cdecl are inline in the function prototypes and
the function itself. This is better-style than using #pragma linkage. Both work
equally well.

The program shows that 16-bit linkage actually means two things: it means that when
calling a 16-bit routine from 32-bit code, pass t he parameters to the 16-bit target
in the manner it expects. It also means that if a function inside of a 32-bit
application is declared to be a 16-bit function , then it picks up its parameters
from the stack and/or registers in the 16-bit manner. Thus routine printit has been
emitted as 32-bit code with a 1 6-bit front end!

Using the callback there is some limit to the amount of data which may be passed in
the parameter list (perhaps 32 words). Do not pass structures by value using a
callback, and carefully check the documentation.

Appendix T - Thunking T- 23 16 Bi t Callback to 32 Bi t Ma in

LDT allocation in 16-Bit Program

#define INCL BASE
... etc.

!* ---- 16 BIT Main ---- *I

void PassTo16 (SEL sel);

void main ()
{

USHORT re;
SEL sel;

re = DosAllocSeg (200, &sel, SEG NONSHARED);
if (re) printf (" MAIN: DosAllocSeg Failure\n");

}

printf ("Private Segment at %4X \n" , sel) ;
PassTo16 (sel);
DosExit (EXIT _PROCESS, 0);

#define INCL BASE
.. . etc.

/* ---- 16 BIT DLL ---- *I

extern USHORT APIENTRY usSegmentSize (SEL sel);

void PassTo16 (SEL sel)
{

}

USHORT re ;
SEL sel1 ;
printf (" \n DLL Entered \n");

printf ("Private Segment at %4X \n", sel);
printf ("Segment Limit is %d \n", usSegment Size (sel));

re = DosAllocSeg (200, &sel1, SEG NONSHARED) ;
if (re) printf ("UTIL: DosAllocSeg Failure\n") ;

printf ("\nPrivate Segment at %4X \n" , se l 1);
printf ("Segment Limit is %d \n", usSegmentSize (sel 1));
return;

This program appears in \OS22LABS\SAMPLES\LDT16DLL. It was written and compiled
using 16-Bit OS/2 . The 16-Bit EXE and 16-Bit DLL are in the directory. Run as
MAIN.EXE.

The printout from this program appears in the left column of the next page. The
16-bit main allocates a 200 byte segment and passes the selector to the DLL. The
16-bit DLL also allocates a 200 byte segment . In both cases the LDT contains a
limit of 199, which is what we expect in a 16-bit environment.

App e ndix T - Thunk i ng T- 24 LDT a llocation in 16- Bi t Prog ram

16/ 16 and 32/ 16 Printout

1 6 Bit Main and 1 6 Bit DLL

Private Segment at 4 7

DLL Entered
Private Segment at 4 7
Segment Limit is 1 99

Private Segment at 5 7
Segment Limit is 1 99

32 Bit Main and 16 Bit DLL

Private Segment at 8FOOOO

DLL Entered
Private Segment at SF
Segment Limit is 4095

Private Segment at 97
Segment Limit is 1 99

One interesting question arises: let's say that a 32-bit main allocates some memory
using DosAllocMem, and then passes the selector of that memory object to a 16-bit
DLL. Who builds the LDT? When is it built? Does , in fact, every 32-bit application
have its own LDT in 32-bit OS/2.

The program on the next page and the printout above demonstrate that each 32-bit
process does have its own LDT and a DosAllocMem of 200 bytes will actually create
an LDT entry with a limit of 4095! However, when the 16-bit DLL allocates 200
bytes, it creates an LDT entry with a limit of 199.

Thus:

16 Bit Applications Running under 32-Bit OS/2 set the LIMIT field in the LDT to the
exact value of the Segment Limit.

32 Bit applications use an LDT entry when they do a DosAllocMem. The limit of the LDT
entry is the actual memory limit, here 4095.

If a 32-bit application passes a selector to a 16 bit DLL, the selector allocated by
the 32-bit application has a minimum length of 4K, whereas a selector allocated by the
DLL has a length equal to the allocation size.

Appe ndix T - Th unking T -25 16/ 1 6 a n d 32/ 1 6 Pr intout

LDT allocation in 32-Bit Program

#define INCL BASE
#include < stdio.h >
#include < os2.h >

II #define SELECTOROF(ptr) ((((ULONG)(ptr)) > > 13) f 7) <- OS2DEF.H

11 This 16 bit function resides in UTIL. DLL

void _Far16 _Cdecl PassTo16 (SEL sel);

#define ALLOCFLAGS PAG READ PAG WRITE PAG COMMIT OBJ TILE

void main ()
{

}

APIRET re;
PCH pch32;
PCH _ Seg 1 6 pch 1 6 ;

II linear address of our private array
II 16: 16 address of our private array

re = DosAllocMem ((PPVOID) &pch32, 200, ALLOCFLAGS);
if (re) printf ("MAIN: DosAllocMem Failure\n");
pch 16 = pch32;
printf ("Private Segment at % 8X \n ", pch 1 6);

PassTo16 ((SEL) pch16 > > 16);
DosExit (EXIT _PROCESS, NO ERROR);

This program appears in \OS22LABS\SAMPLES\LDT32DLL. It was written and compiled
using 32-Bit OS/2. The 32-Bit EXE and 16-Bit DLL are in the directory. Run as
MAIN.EXE. It uses the 16-bit DLL and import library from .. \LDT16DLL. The
printout appears on the previous page.

In order to save space on the class diskette, t he 16-bit import library and DLL are
not in this directory. Copy them in by running README.CMD.

We did not use the pre-defined macro SELECTOROF which calculates the selector from a
16: 16 pointer. Instead, we simply shifted pch 16 to the right 16 bits.

This program demonstrates that 32-bit programs runn ing under OS/2 2.0 have a 16-bit
LDT associated with them. Thus, when we allocated 200 bytes of memory from the
32-bit code and passed the selector to the 16-bit DLL, the 16-bit DLL reported (in
the second column on the previous page) that we had allocated 4K bytes at that
selector:offset address .

This explains while OBJ TILE is the default in OS/2 2 .1: every DosAllocMem and
DosAllocSharedMem uses at least one 64K LDT entry in the 32-bit processes LDT!

Appe ndix T - Thunking T -26 LDT al l ocation in 32- Bit Prog r am

	ADP171A.tmp
	IBM Copyright Permission #22527
	Reprint Courtesy of International Business Machines Corporation, © 1994 International Business Machines Corporation'

